Numerical Hermitian Yang-Mills connections and Kähler cone substructure

被引:0
|
作者
Lara B. Anderson
Volker Braun
Burt A. Ovrut
机构
[1] University of Pennsylvania,Department of Physics
[2] Dublin Institute for Advanced Studies,undefined
关键词
Differential and Algebraic Geometry; Superstrings and Heterotic Strings; Superstring Vacua;
D O I
暂无
中图分类号
学科分类号
摘要
We further develop the numerical algorithm for computing the gauge connection of slope-stable holomorphic vector bundles on Calabi-Yau manifolds. In particular, recent work on the generalized Donaldson algorithm is extended to bundles with Kähler cone substructure on manifolds with h1;1  > 1. Since the computation depends only on a one-dimensional ray in the Kähler moduli space, it can probe slope-stability regardless of the size of h1;1. Suitably normalized error measures are introduced to quantitatively compare results for different directions in Kähler moduli space. A significantly improved numerical integration procedure based on adaptive refinements is described and implemented. Finally, a rapid computational check is proposed for probing the slope-stable stability properties of a given vector bundle.
引用
收藏
相关论文
共 50 条
  • [1] Numerical Hermitian Yang-Mills connections and Kahler cone substructure
    Anderson, Lara B.
    Braun, Volker
    Ovrut, Burt A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (01):
  • [3] Locally Conformal Kähler and Hermitian Yang-Mills Metrics
    Jieming Yang
    [J]. Chinese Annals of Mathematics, Series B, 2021, 42 : 511 - 518
  • [4] Hermitian Yang-Mills Connections on Blowups
    Dervan, Ruadhai
    Sektnan, Lars Martin
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 516 - 542
  • [5] A note on singular Hermitian Yang-Mills connections
    Li, Yang
    [J]. MATHEMATICAL RESEARCH LETTERS, 2023, 30 (01) : 167 - 184
  • [6] Bubbling Phenomenon for Hermitian Yang-Mills Connections
    Li, Yang
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (06) : 4657 - 4678
  • [7] Non-Hermitian Yang-Mills connections
    Kaledin D.
    Verbitsky M.
    [J]. Selecta Mathematica, 1998, 4 (2) : 279 - 320
  • [8] Hermitian Yang-Mills connections on pullback bundles
    Sektnan, Lars Martin
    Tipler, Carl
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (01)
  • [9] Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories
    Anderson, Lara B.
    Braun, Volker
    Karp, Robert L.
    Ovrut, Burt A.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (06):
  • [10] Numerical Hermitian Yang-Mills connections and vector bundle stability in heterotic theories
    Lara B. Anderson
    Volker Braun
    Robert L. Karp
    Burt A. Ovrut
    [J]. Journal of High Energy Physics, 2010