Study on the bond properties between BFRP bars and hybrid fibers reinforced recycled concrete under freeze-thaw cycles

被引:0
|
作者
Su, Yanming [1 ]
机构
[1] Shenyang Jianzhu Univ, Sch Civil Engn, Shenyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Hybrid fibers; recycled concrete; freeze-thaw cycles; BFRP bars; bond properties; MECHANICAL-PROPERTIES; AGGREGATE; PERFORMANCE; BEHAVIOR; WASTE;
D O I
10.1080/01694243.2024.2345961
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
To study the bond properties between basalt fiber reinforced polymer (BFRP) bars and hybrid fibers which were basalt fiber (BF) and polypropylene fiber (PF) reinforced recycled concrete under freeze-thaw cycles, conducting center pull-out tests to study the effects of three factors on the bond properties: the number of freeze-thaw cycles, the volume fractions of single fiber, and the volume fractions of hybrid fibers. Based on the data obtained from the test, establishing a four-stage bond-slip constitutive relationship model. The results showed that the failure modes were pull-out failure and splitting failure. The bond strength decreased when adding the single fiber, with a maximum reduction of 13.18%, but the peak slip increased, with a maximum increase of 69.92%. When the volume fraction of BF was 0.3%, it achieved the optimal effect. The bond strength and peak slip increased when adding hybrid fibers, with maximum increases of 13.47 and 130.08%, respectively. However, excessive fiber content will reduce the increase of bond strength. The bond strength between BFRP bars and hybrid fiber-reinforced recycled aggregate concrete (HFRAC) increased when the number of freeze-thaw cycles increased but decreased when the number of freeze-thaw cycles exceeded 50. The four-stage bond-slip constitutive relationship model fitted well with the bond-slip curves. Compared with other fiber-reinforced recycled concrete specimens, this model fitted better with the curves of HFRAC specimens after freeze-thaw cycles and had the best fitting effect for the internal crack slip stage of the curves.
引用
收藏
页码:3579 / 3600
页数:22
相关论文
共 50 条
  • [41] Rainstorm Resistance of Recycled Pervious Concrete under the Coupling of Fatigue and Freeze-Thaw Cycles
    Huang, Kai-Lin
    Song, Yang
    Sheng, Yan-Min
    BUILDINGS, 2024, 14 (01)
  • [42] Fracture properties of concrete under freeze-thaw cycles and sulfate attack
    Hu, Shaowei
    Yin, Yangyang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 350
  • [43] Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles
    Zhao, Yan-Ru
    Wang, Lei
    Lei, Zhen-Kun
    Han, Xiao-Feng
    Shi, Jin-Na
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 163 : 460 - 470
  • [44] Fracture Properties of Basalt Fiber Reinforced Concrete after Freeze-Thaw Cycles
    Zhao Y.
    Song B.
    Wang L.
    Han X.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2019, 22 (04): : 575 - 583
  • [45] Study on Bond Properties of BFRP Bars to Basalt Fiber Reinforced Concrete
    Bi, Qiaowei
    Wang, Qingxiang
    Wang, Hui
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 1251 - +
  • [46] Study on the bonding performance between basalt textile and concrete under freeze-thaw cycles
    Cai, Shixing
    Lin, Jianhong
    Fan, Kaifang
    Chen, Yuanyi
    Wang, Zeping
    ENGINEERING FAILURE ANALYSIS, 2023, 146
  • [47] Bond durability of basalt-fiber-reinforced-polymer bars embedded in lightweight aggregate concrete subjected to freeze-thaw cycles
    Deng, Peng
    Wang, Yuejiao
    Sun, Yan
    Liu, Yan
    Guo, Wenhao
    STRUCTURAL CONCRETE, 2021, 22 (05) : 2829 - 2848
  • [49] A damage model of concrete under freeze-thaw cycles
    Wei Jun
    Wu Xing-hao
    Zhao Xiao-long
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2003, 18 (3): : 40 - 42
  • [50] Study on dynamic mechanical properties of carbon nanotubes reinforced concrete subjected to freeze-thaw cycles
    Song, Shushuang
    Niu, Yanning
    Zhong, Xiumei
    STRUCTURAL CONCRETE, 2022, 23 (05) : 3221 - 3233