Weighted fractional inequalities for new conditions on h-convex functions

被引:3
|
作者
Benaissa, Bouharket [1 ]
Azzouz, Noureddine [2 ,3 ]
Budak, Huseyin [4 ]
机构
[1] Univ Tiaret, Fac Mat Sci, Lab Informat & Math, Tiaret, Algeria
[2] Univ Ctr Nour Bachir, Fac Sci, El Bayadh, Algeria
[3] Univ Belhadj Bouchaib, Ain Temouchent, Algeria
[4] Duzce Univ, Fac Sci & Arts, Dept Math, TR-81620 Duzce, Turkiye
来源
BOUNDARY VALUE PROBLEMS | 2024年 / 2024卷 / 01期
关键词
Fractional conformable integrals; Fractional conformable derivative; Hermite-Hadamard inequality; HERMITE-HADAMARD; INTEGRALS;
D O I
10.1186/s13661-024-01889-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a new function class called B-function to establish a novel version of Hermite-Hadamard inequality for weighted psi-Hilfer operators. Additionally, we prove two new identities involving weighted psi-Hilfer operators for differentiable functions. Moreover, by employing these equalities and the properties of the B-function, we derive several trapezoid- and midpoint-type inequalities for h-convex functions. Furthermore, the obtained results are reduced to several well-known and some new inequalities by making specific choices of the function h.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] On Caputo-Fabrizio Fractional Integral Inequalities of Hermite-Hadamard Type for Modified h-Convex Functions
    Wang, Xiaobin
    Saleem, Muhammad Shoaib
    Aslam, Kiran Naseem
    Wu, Xingxing
    Zhou, Tong
    JOURNAL OF MATHEMATICS, 2020, 2020
  • [42] Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions
    Dragomir, Silvestru Sever
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2364 - 2380
  • [43] Generalized fractional Ostrowski type integral inequalities for logarithmically h-convex function
    Hussain, Sabir
    Azhar, Faiza
    Latif, Muhammad Amer
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1265 - 1278
  • [44] Ostrowski type inequalities for functions whose derivatives are h-convex in absolute value
    Dragomir, S. S.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2015, 19 (02): : 133 - 148
  • [45] q-HERMITE--HADAMARD INEQUALITIES FOR FUNCTIONS WITH CONVEX OR h-CONVEX q-DERIVATIVE
    Korus, Peter
    Napoles Valdes, Juan E.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 601 - 610
  • [46] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [47] ON ONE CLASS OF H-CONVEX FUNCTIONS
    ABASOV, TM
    RUBINOV, AM
    DOKLADY AKADEMII NAUK, 1993, 331 (04) : 391 - 392
  • [48] Some Hermite-Hadamard Type Inequalities for h-Convex Functions and their Applications
    Ogulmus, Hatice
    Sarikaya, Mehmet Zeki
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (03): : 813 - 819
  • [49] LOCAL FRACTIONAL OSTROWSKI-TYPE INEQUALITIES INVOLVING GENERALIZED h-CONVEX FUNCTIONS AND SOME APPLICATIONS FOR GENERALIZED MOMENTS
    Sun, Wenbing
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (01)
  • [50] HERMITS-HADAMARD TYPE INEQUALITIES FOR MULTIDIMENSIONAL STRONGLY h-CONVEX FUNCTIONS
    Feng, Mengjie
    Ruan, Jianmiao
    Ma, Xinsheng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 897 - 911