Long Document Ranking with Query-Directed Sparse Transformer

被引:0
|
作者
Jiang, Jyun-Yu [1 ]
Xiong, Chenyan [2 ]
Lee, Chia-Jung [3 ]
Wang, Wei [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
[2] Microsoft Res AI, Redmond, WA USA
[3] Amazon, Seattle, WA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The computing cost of transformer selfattention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on one fully supervised and three few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDSTransformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected selfattention. All source codes, trained model, and predictions of this work are available at https://github.com/hallogameboy/ QDS-Transformer.
引用
收藏
页码:4594 / 4605
页数:12
相关论文
共 50 条
  • [1] The implementation of a query-directed multi-document
    He, Tingting
    Shao, Wei
    Xiao, HuaSong
    Hu, Po
    [J]. ALPIT 2007: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON ADVANCED LANGUAGE PROCESSING AND WEB INFORMATION TECHNOLOGY, 2007, : 105 - +
  • [2] Query-directed passwords
    O'Gorman, L
    Bagga, A
    Bentley, J
    [J]. COMPUTERS & SECURITY, 2005, 24 (07) : 546 - 560
  • [3] Call center customer verification by query-directed passwords
    O'Gorman, L
    Bagga, A
    Bentley, J
    [J]. FINANCIAL CRYPTOGRAPHY, 2004, 3110 : 54 - 67
  • [4] Query-Directed Adaptive Heap Cloning for Optimizing Compilers
    Sui, Yulei
    Li, Yue
    Xue, Jingling
    [J]. PROCEEDINGS OF THE 2013 IEEE/ACM INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION (CGO), 2013, : 1 - 11
  • [5] Approximate Nearest Neighbor Search Using Query-Directed Dense Graph
    Wang, Hongya
    Zhao, Zeng
    Yang, Kaixiang
    Song, Hui
    Xiao, Yingyuan
    [J]. DATABASE SYSTEMS FOR ADVANCED APPLICATIONS: DASFAA 2021 INTERNATIONAL WORKSHOPS, 2021, 12680 : 429 - 444
  • [7] RANKING WITH QUERY INFLUENCE WEIGHTING FOR DOCUMENT RETRIEVAL
    Liao, Zhen
    Huang, Ya Lou
    Xie, Mao Qiang
    Liu, Jie
    Wang, Yang
    Lui, Min
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 1177 - +
  • [8] Context Attentive Document Ranking and Query Suggestion
    Ahmad, Wasi Uddin
    Chang, Kai-Wei
    Wang, Hongning
    [J]. PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '19), 2019, : 385 - 394
  • [9] Noun phrases in interactive query expansion and document ranking
    Vechtomova, Olga
    [J]. INFORMATION RETRIEVAL, 2006, 9 (04): : 399 - 420
  • [10] Noun phrases in interactive query expansion and document ranking
    Olga Vechtomova
    [J]. Information Retrieval, 2006, 9 : 399 - 420