Context Attentive Document Ranking and Query Suggestion

被引:51
|
作者
Ahmad, Wasi Uddin [1 ]
Chang, Kai-Wei [1 ]
Wang, Hongning [2 ]
机构
[1] Univ Calif Los Angeles, Los Angeles, CA 90032 USA
[2] Univ Virginia, Charlottesville, VA USA
基金
美国国家科学基金会;
关键词
Search tasks; document ranking; query suggestion; neural IR models;
D O I
10.1145/3331184.3331246
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a context-aware neural ranking model to exploit users' on-task search activities and enhance retrieval performance. In particular, a two-level hierarchical recurrent neural network is introduced to learn search context representation of individual queries, search tasks, and corresponding dependency structure by jointly optimizing two companion retrieval tasks: document ranking and query suggestion. To identify variable dependency structure between search context and users' ongoing search activities, attention at both levels of recurrent states are introduced. Extensive experiment comparisons against a rich set of baseline methods and an in-depth ablation analysis confirm the value of our proposed approach for modeling search context buried in search tasks.
引用
收藏
页码:385 / 394
页数:10
相关论文
共 50 条
  • [1] A Document Ranking Method With Query-Related Web Context
    Kim, Jaekwang
    [J]. IEEE ACCESS, 2019, 7 : 150168 - 150174
  • [2] Query suggestion based on theme and context
    [J]. Meng, Lingling, 1600, Science and Engineering Research Support Society (07):
  • [3] RANKING WITH QUERY INFLUENCE WEIGHTING FOR DOCUMENT RETRIEVAL
    Liao, Zhen
    Huang, Ya Lou
    Xie, Mao Qiang
    Liu, Jie
    Wang, Yang
    Lui, Min
    [J]. PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-6, 2009, : 1177 - +
  • [4] Post-Ranking Query Suggestion by Diversifying Search Results
    Song, Yang
    Zhou, Dengyong
    He, Li-wei
    [J]. PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 815 - 824
  • [5] Location Aware Keyword Query Suggestion Based on Document Proximity
    Qi, Shuyao
    Wu, Dingming
    Mamoulis, Nikos
    [J]. 2016 32ND IEEE INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2016, : 1566 - 1567
  • [6] Location Aware Keyword Query Suggestion Based on Document Proximity
    Qi, Shuyao
    Wu, Dingming
    Mamoulis, Nikos
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (01) : 82 - 97
  • [7] Context-Sensitive Document Ranking
    常利军
    于旭
    秦璐
    [J]. Journal of Computer Science & Technology, 2010, 25 (03) : 444 - 457
  • [8] Context-Sensitive Document Ranking
    Chang, Li-Jun
    Yu, Jeffrey Xu
    Qin, Lu
    [J]. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2010, 25 (03) : 444 - 457
  • [9] Noun phrases in interactive query expansion and document ranking
    Vechtomova, Olga
    [J]. INFORMATION RETRIEVAL, 2006, 9 (04): : 399 - 420
  • [10] Noun phrases in interactive query expansion and document ranking
    Olga Vechtomova
    [J]. Information Retrieval, 2006, 9 : 399 - 420