Effects of biodegradable poly(butylene adipate-co-terephthalate) and poly(lactic acid) plastic degradation on soil ecosystems

被引:3
|
作者
Dissanayake, Pavani Dulanja [1 ,2 ,3 ]
Withana, Piumi Amasha [1 ,2 ,4 ]
Sang, Mee Kyung [5 ]
Cho, Yoora [1 ,2 ,4 ]
Park, Jeyoung [6 ,7 ]
Oh, Dongyeop X. [6 ,8 ,9 ]
Chang, Scott X. [10 ]
Lin, Carol Sze Ki [11 ]
Bank, Michael S. [12 ,13 ]
Hwang, Sung Yeon [6 ,14 ]
Ok, Yong Sik [1 ,2 ,4 ,15 ]
机构
[1] Korea Univ, Korea Biochar Res Ctr, APRU Sustainable Waste Management Program, Seoul, 02841, South Korea
[2] Korea Univ, Div Environm Sci & Ecol Engn, Seoul, 02841, South Korea
[3] Coconut Res Inst, Soils & Plant Nutr Div, Lunuwilla, Sri Lanka
[4] Int ESG Assoc IESGA, Seoul, South Korea
[5] Natl Inst Agr Sci, Div Agr Microbiol, Wonju, South Korea
[6] Korea Res Inst Chem Technol KRICT, Res Ctr Biobased Chem, Ulsan, South Korea
[7] Sogang Univ, Dept Chem & Biomol Engn, Seoul, South Korea
[8] Inha Univ, Dept Polymer Sci & Engn, Incheon, South Korea
[9] Inha Univ, Program Environm & Polymer Engn, Incheon, South Korea
[10] Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada
[11] City Univ Hong Kong, Sch Energy & Environm, Kowloon Tong, Hong Kong, Peoples R China
[12] Inst Marine Res, Bergen, Norway
[13] Univ Massachusetts, Amherst, MA USA
[14] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin, South Korea
[15] Univ Queensland, Sustainable Minerals Inst, Brisbane, Qld, Australia
基金
新加坡国家研究基金会;
关键词
biodegradable plastics; circular economy; environmental; social; and governance (ESG); greenwashing; soil resource; MULCH FILMS; PLA; BEHAVIOR; BLENDS; PBAT; MICROPLASTICS; BIOPLASTICS; WASTE;
D O I
10.1111/sum.13055
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Despite that biodegradable plastics are perceived as environmentally friendly, there is a lack of comprehensive understanding of their fate in soil. Current Environmental, Social, and Governance (ESG) frameworks, along with new UNEP regulations on plastic pollution, necessitate scientific information on plastic degradation in soils for developing sustainable biodegradable plastics. In this study, we examined the degradation rates of two biodegradable plastics, poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA), in a laboratory microcosm experiment using uncontaminated soil, with PBAT or PLA added at 8.3% (w/w). Our aim was to further understand the impact of these plastic types on soil properties and microbial communities under different incubation temperatures. Both PBAT and PLA treatments elevated cumulative CO2 efflux compared with the control soil incubated at 25 and 58 degrees C. After 33 weeks, 9.2% and 6.1% of the added PBAT and PLA degraded, respectively, at 58 degrees C, while only 2.3% of PBAT and 1.7% of PLA degraded at 25 degrees C, implying slower degradation rates of PBAT and PLA under the lower temperature. Degradation at 58 degrees C increased total soil carbon by 0.6%, 1.9%, and 4.3% for Control, PBAT, and PLA, respectively, and soil electrical conductivity by 0.17, 0.33, and 2.38 dS m-1, respectively, but decreased soil pH. Microbial diversity and richness decreased under thermophilic conditions at 58 degrees C compared with that at 25 degrees C. We conclude that the degradation of PBAT and PLA varies with environmental condition, and influences soil properties.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Preparation and environmental degradation behavior of biodegradable poly (butylene adipate-co-terephthalate) fiber
    Chen, Yong
    Wu, Jing
    Wang, Chaosheng
    Pan, Xiaohu
    Li, Naixiang
    Dai, Junming
    Wang, Huaping
    Fangzhi Xuebao/Journal of Textile Research, 2022, 43 (02): : 37 - 43
  • [22] The carbon nanotubes effects on the morphology and properties of poly(lactic) acid/poly(butylene adipate-co-terephthalate) blends
    Xiao, Zhihua
    Li, Guili
    Liu, Chunxiao
    Li, Haimei
    Lin, Jun
    POLYMER COMPOSITES, 2022, 43 (12) : 8725 - 8736
  • [23] Water-Disintegrative and Biodegradable Blends Containing Poly(L-lactic acid) and Poly(butylene adipate-co-terephthalate)
    Oyama, Hideko T.
    Tanaka, Yoshikazu
    Hirai, Sakiko
    Shida, Shigenari
    Kadosaka, Ayako
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2011, 49 (05) : 342 - 354
  • [24] Chemical recycling of poly(butylene terephthalate) into value-added biodegradable poly(butylene adipate-co-terephthalate)
    Yan, Xiangxiang
    Huang, Shujie
    Huan, Jie
    Li, Jing
    Li, Xiaohong
    Wang, Sheng
    Li, Hongjuan
    Guo, Xuehua
    Ren, Jun
    Tu, Yingfeng
    POLYMER CHEMISTRY, 2024, 15 (20) : 2047 - 2054
  • [25] DGEBA-Based Epoxy Resin as Compatibilizer for Biodegradable Poly (lactic acid)/Poly(butylene adipate-co-terephthalate) Blends
    Lopes Pereira, Elaine C.
    Soares, Bluma G.
    Jesus, Rayan B.
    Sirqueira, Alex S.
    MACROMOLECULAR SYMPOSIA, 2018, 381 (01)
  • [26] Isothermal Crystallization and Melting Behaviors of Biodegradable Poly(lactic acid)/Poly(Butylene Adipate-co-terephthalate) Blends Compatibilized by Transesterification
    Wang, Biaobing
    Zhao, Xin
    Wang, Liuyang
    POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (07) : 718 - 726
  • [27] Study of biodegradable polyactide/poly(butylene adipate-co-terephthalate) blends
    Jiang, L
    Wolcott, MP
    Zhang, JW
    BIOMACROMOLECULES, 2006, 7 (01) : 199 - 207
  • [28] Chemical modification of poly(lactic acid) and its use as matrix in poly(lactic acid) poly(butylene adipate-co-terephthalate) blends
    Rigolin, Talita Rocha
    Costa, Lidiane Cristina
    Chinelatto, Marcelo Aparecido
    Riveros Munoz, Pablo Andres
    Prado Bettini, Silvia Helena
    POLYMER TESTING, 2017, 63 : 542 - 549
  • [29] Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends
    Dil, Ebrahim Jalali
    Carreau, P. J.
    Favis, Basil D.
    POLYMER, 2015, 68 : 202 - 212
  • [30] Application of phosphogypsum as solid waste in poly(lactic acid)/poly(butylene adipate-co-terephthalate) composite
    Chen, Enzhao
    Chen, Xiaoting
    Tu, Canzhao
    Wu, Kangdi
    Cai, Yuhui
    Zhou, Jiancheng
    Li, Baoming
    POLYMER ENGINEERING AND SCIENCE, 2025,