Thermal Property Enhancement of a Novel Shape-Stabilized Sodium Acetate Trihydrate-Acetamide/Expanded Graphite-Based Composite Phase Change Material

被引:3
|
作者
An, Zhoujian [1 ,2 ]
Hou, Wenjie [1 ,2 ]
Du, Xiaoze [1 ,2 ]
Huang, Zhongzheng [1 ,2 ]
Mombeki Pea, Hamir Johan [1 ,2 ]
Zhang, Dong [1 ,2 ]
Liu, Xiaomin [3 ]
机构
[1] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
[2] Key Lab Multisupply Syst Solar Energy & Biomass Ga, Lanzhou 730050, Peoples R China
[3] Gansu Nat Energy Res Inst, Lanzhou 730046, Peoples R China
基金
中国国家自然科学基金;
关键词
sodium acetate trihydrate; melting point modification agent; expanded graphite; shape stability; thermal conductivity enhancement; CONDUCTIVITY; PERFORMANCE; SYSTEMS;
D O I
10.1007/s11630-024-1990-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change materials (PCMs) are a kind of highly efficient thermal storage materials which have a bright application prospect in many fields such as energy conservation in buildings, waste heat recovery, battery thermal management and so on. Especially inorganic hydrated salt PCMs have received increasing attention from researchers due to their advantages of being inexpensive and non-flammable. However, inorganic hydrated salt PCMs are still limited by the aspects of inappropriate phase change temperature, liquid phase leakage, large supercooling and severe phase separation in the application process. In this work, sodium acetate trihydrate was selected as the basic inorganic PCM, and a novel shape-stabilized composite phase change material (CPCM) with good thermal properties was prepared by adding various functional additives. At first, the sodium acetate trihydrate-acetamide binary mixture was prepared and the melting point was adjusted using acetamide. Then the binary mixture was incorporated into expanded graphite to synthesize a novel shape-stabilized CPCM. The thermophysical properties of the resultant shape-stabilized CPCM were systematically investigated. The microscopic morphology and chemical structure of the obtained shape-stabilized CPCM were characterized and analyzed. The experiment results pointed out that acetamide could effectively lower the melting point of sodium acetate trihydrate. The obtained shape-stabilized CPCM modified with additional 18% (mass fraction) acetamide and 12% (mass fraction) expanded graphite exhibited good shape stability and thermophysical characteristics: a low supercooling degree of 1.75 degrees C and an appropriate melting temperature of 40.77 degrees C were obtained; the latent heat of 151.64 kJ/kg and thermal conductivity of 1.411 W/(m<middle dot>K) were also satisfactory. Moreover, after 50 accelerated melting-freezing cycles, the obtained shape-stabilized CPCM represented good thermal reliability.
引用
收藏
页码:1564 / 1576
页数:13
相关论文
共 50 条
  • [31] Preparation and thermal performance enhancement of sodium thiosulfate pentahydrate-sodium acetate trihydrate/expanded graphite phase change energy storage composites
    Ye, Liming
    Xie, Ning
    Lan, Youtai
    Niu, Junyi
    Deng, Suyun
    Gao, Xuenong
    Fang, Yutang
    Zhang, Zhengguo
    JOURNAL OF ENERGY STORAGE, 2022, 50
  • [32] Flame Retardant Paraffin-Based Shape-Stabilized Phase Change Material via Expandable Graphite-Based Flame-Retardant Coating
    Xu, Ling
    Liu, Xuan
    Yang, Rui
    MOLECULES, 2020, 25 (10):
  • [33] Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage
    Song, Yanlin
    Zhang, Nan
    Jing, Yaoge
    Cao, Xiaoling
    Yuan, Yanping
    Haghighat, Fariborz
    ENERGY, 2019, 189
  • [34] Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage
    Li Pengyang
    Chen Qiang
    Peng Qingyu
    He Xiaodong
    PIGMENT & RESIN TECHNOLOGY, 2021, 50 (05) : 412 - 418
  • [35] Synergistically-Enhanced Thermal Conductivity of Shape-Stabilized Phase Change Materials by Expanded Graphite and Carbon Nanotube
    Liu, Zhang-Peng
    Yang, Rui
    APPLIED SCIENCES-BASEL, 2017, 7 (06):
  • [36] Development of sodium acetate trihydrate-based composite phase change materials with expanded graphite for nonflammable thermal stabilization and isothermal performance in battery modules
    Heo, Seungmin
    Yook, Se-Jin
    APPLIED THERMAL ENGINEERING, 2025, 271
  • [37] Shape-stabilized composite phase change material for thermal insulation of cotton fabrics with sandwich structure
    Zhang, Wei
    Zhang, Yibo
    Yao, Jiming
    Wei, Sainan
    Lu, Kailiang
    JOURNAL OF THE TEXTILE INSTITUTE, 2024, 115 (03) : 357 - 365
  • [38] Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite
    Zhang, Xiaoguang
    Yin, Zhaoyu
    Meng, Dezhi
    Huang, Zhaohui
    Wen, Ruilong
    Huang, Yaoting
    Min, Xin
    Liu, Yangai
    Fang, Minghao
    Wu, Xiaowen
    RENEWABLE ENERGY, 2017, 112 : 113 - 123
  • [39] Preparation, Encapsulation and Thermal Properties of Fatty Acid/Expanded Graphite Composites as Shape-stabilized Phase Change Materials
    Meng Xin
    Zhang Huan-Zhi
    Zhao Zi-Ming
    Sun Li-Xian
    Xu Fen
    Zhang Jian
    Jiao Qing-Zhu
    Bao Yan
    Ma Jian-Zhong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2012, 33 (03): : 526 - 530
  • [40] Paraffin/graphene sponge composite as a shape-stabilized phase change material for thermal energy storage
    Li, Pengyang
    Chen, Qiang
    Peng, Qingyu
    He, Xiaodong
    Peng, Qingyu (pengqingyu@hit.edu.cn), 1600, Emerald Group Holdings Ltd. (50): : 412 - 418