Low-Latency VR Video Processing-Transmitting System Based on Edge Computing

被引:1
|
作者
Gao, Nianzhen [1 ,2 ]
Zhou, Jiaxi [1 ,2 ]
Wan, Guoan [1 ,2 ]
Hua, Xinhai [3 ]
Bi, Ting [1 ,2 ]
Jiang, Tao [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Cyber Sci & Engn, Res Ctr 6G Mobile Commun, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[3] ZTE Corp, Dept Cloud Video Prod, Nanjing 210012, Peoples R China
基金
中国国家自然科学基金;
关键词
VR video; edge computing; multicast; resource allocation; bitrate decision; tile-based transmission; DESIGN;
D O I
10.1109/TBC.2024.3380455
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The widespread use of live streaming necessitates low-latency requirements for the processing and transmission of virtual reality (VR) videos. This paper introduces a prototype system for low-latency VR video processing and transmission that exploits edge computing to harness the computational power of edge servers. This approach enables efficient video preprocessing and facilitates closer-to-user multicast video distribution. Despite edge computing's potential, managing large-scale access, addressing differentiated channel conditions, and accommodating diverse user viewports pose significant challenges for VR video transcoding and scheduling. To tackle these challenges, our system utilizes dual-edge servers for video transcoding and slicing, thereby markedly improving the viewing experience compared to traditional cloud-based systems. Additionally, we devise a low-complexity greedy algorithm for multi-edge and multi-user VR video offloading distribution, employing the results of bitrate decisions to guide video transcoding inversely. Simulation results reveal that our strategy significantly enhances system utility by 44.77 $\%$ over existing state-of-the-art schemes that do not utilize edge servers while reducing processing time by 58.54 %.
引用
收藏
页码:862 / 871
页数:10
相关论文
共 50 条
  • [31] Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication
    Salathe, Yves
    Kurpiers, Philipp
    Karg, Thomas
    Lang, Christian
    Andersen, Christian Kraglund
    Akin, Abdulkadir
    Krinner, Sebastian
    Eichler, Christopher
    Wallraff, Andreas
    PHYSICAL REVIEW APPLIED, 2018, 9 (03):
  • [32] Cost-aware & Fault-tolerant Geo-distributed Edge Computing for Low-latency Stream Processing
    Xu, Jinlai
    Palanisamy, Balaji
    2021 IEEE 7TH INTERNATIONAL CONFERENCE ON COLLABORATION AND INTERNET COMPUTING (CIC 2021), 2021, : 117 - 124
  • [33] Video post processing: low-latency spatiotemporal approach for detection and removal of rain
    Tripathi, A. K.
    Mukhopadhyay, S.
    IET IMAGE PROCESSING, 2012, 6 (02) : 181 - 196
  • [34] Latency Synchronization for Social VR with Mobile Edge Computing
    Hsiao, Ta-Che
    Yang, De-Nian
    Liao, Wanjiun
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 4092 - 4097
  • [35] Virtual Try-On Application leveraging RoCE in Low-latency Edge Computing Networks
    Guaitolini, Michelangelo
    Khan, Abdul H.
    Le Rouzic, Emilie
    Paolucci, Francesco
    Cugini, Filippo
    2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,
  • [36] Low-Latency Robust Computing Vehicular Networks
    Shafigh, Alireza Shams
    Lorenzo, Beatriz
    Glisic, Savo
    Fang, Yuguang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (02) : 2130 - 2144
  • [37] Practical Enhancement and Evaluation of a Low-latency Network Model using Mobile Edge Computing
    Intharawijitr, Krittin
    Iida, Katsuyoshi
    Koga, Hiroyuki
    Yamaoka, Katsunori
    2017 IEEE 41ST ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2017, : 567 - 574
  • [38] Edge and Central Cloud Computing: A Perfect Pairing for High Energy Efficiency and Low-Latency
    Hu, Xiaoyan
    Wang, Lifeng
    Wong, Kai-Kit
    Tao, Meixia
    Zhang, Yangyang
    Zheng, Zhongbin
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (02) : 1070 - 1083
  • [39] Low-Latency Deterministic Multiplier for Stochastic Computing
    Hussein, Anwar K.
    Artan, N. Sertac
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 272 - 276
  • [40] Low-latency orchestration for workflow-oriented service function chain in edge computing
    Sun, Gang
    Li, Yayu
    Li, Yao
    Liao, Dan
    Chang, Victor
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 85 : 116 - 128