Role of Co Content on the Electrode Properties of P3-Type K0.5Mn1-x Co x O2 Potassium Insertion Materials

被引:1
|
作者
Jha, Pawan Kumar [1 ]
Barpanda, Prabeer [1 ,2 ,3 ]
机构
[1] Indian Inst Sci, Mat Res Ctr, Faraday Mat Lab FaMaL, Bangalore 560012, India
[2] Helmholtz Inst Ulm HIU, Electrochem Energy Storage, D-89081 Ulm, Germany
[3] Karlsruhe Inst Technol KIT, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
SODIUM; CATHODE; MANGANESE; LITHIUM; INTERCALATION; BATTERY; LI;
D O I
10.1021/acs.inorgchem.3c03747
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Potassium-ion batteries are widely being pursued as potential candidates for stationary (grid) storage, where energy dense K+ insertion cathodes are central to economic and energy efficient operation. To develop robust K-based cathodes, it is key to correlate their underlying electronic states to the final electrochemical performance. Here, we report the synthesis and structure-electrochemical property correlation in P3-type K0.5Mn1-xCoxO2 binary layered oxide cathodes. Spectroscopic analyses revealed a random distribution of Mn and Co in transition metal layers in the oxygen anion framework. In this solid-solution family, Co substitution improved the electronic conductivity and structural stability of P3 phases by minimizing local lattice distortion. Co substitution led to a systematic shift of the Co4+/Co3+ and Mn4+/Mn3+ redox potentials. Galvanostatic cycling showed that the Co substitution reduced the initial capacity while improving the cycling stability. The role of Co on final electrochemical properties of P3-layered oxides has been elucidated as a design tool to develop practical potassium-ion batteries.
引用
收藏
页码:7137 / 7145
页数:9
相关论文
共 50 条
  • [1] P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries
    Deng, Qiang
    Zheng, Fenghua
    Zhong, Wentao
    Pan, Qichang
    Liu, Yanzhen
    Li, Youpeng
    Chen, Guilin
    Li, Yunsha
    Yang, Chenghao
    Liu, Meilin
    CHEMICAL ENGINEERING JOURNAL, 2020, 392
  • [2] Self-templated construction of peanut-like P3-type K0.45Mn0.5Co0.5O2 for highly reversible potassium storage
    Zhang, Zhuangzhuang
    Sun, Jianlu
    Duan, Liping
    Du, Yichen
    Li, Jianbo
    Shen, Jian
    Zhou, Xiaosi
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (02) : 554 - 560
  • [3] Thermoelectric and Magnetic Properties of Sn1-x O2:Mn0.5x Co0.5x Nanoparticles Produced by the Microwave Technique
    Salah, Numan
    Habib, Sami
    Azam, Ameer
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (02) : 1190 - 1200
  • [4] Yolk–Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Jiaxin Hao
    Ke Xiong
    Jiang Zhou
    Apparao M. Rao
    Xianyou Wang
    Huan Liu
    Bingan Lu
    Energy & Environmental Materials, 2022, (01) : 261 - 269
  • [5] Yolk–Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Hao, Jiaxin
    Xiong, Ke
    Zhou, Jiang
    Rao, Apparao M.
    Wang, Xianyou
    Liu, Huan
    Lu, Bingan
    Energy and Environmental Materials, 2022, 5 (01): : 261 - 269
  • [6] Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode
    Ramasamy, Hari Vignesh
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Lee, Yun-Sung
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 235 - 243
  • [7] Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode
    Ramasamy, Hari Vignesh
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Lee, Yun-Sung
    Chemical Engineering Journal, 2020, 368 : 235 - 243
  • [8] Co-doped P3 type K0.5Mn1-xCoxO2 (x≤0.5) cathodes for long cycle life potassium ion battery
    Yang, Shujie
    Min, Xin
    Yang, Bozhi
    Liu, Xiaobao
    Yan, Chen
    Liu, Yangai
    Mi, Ruiyu
    Wu, Xiaowen
    Huang, Zhaohui
    Fang, Minghao
    Ma, Bin
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 188
  • [9] Fe-doped layered P3-type K0.45Mn1-xFexO2 (x ≤ 0.5) as cathode materials for low-cost potassium-ion batteries
    Liu, Cai-ling
    Luo, Shao-hua
    Huang, Hong-bo
    Liu, Xin
    Zhai, Yu-chun
    Wang, Zhao-wen
    CHEMICAL ENGINEERING JOURNAL, 2019, 378
  • [10] Yolk-Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Hao, Jiaxin
    Xiong, Ke
    Zhou, Jiang
    Rao, Apparao M.
    Wang, Xianyou
    Liu, Huan
    Lu, Bingan
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (01) : 261 - 269