P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres as cathode materials for high performance potassium-ion batteries

被引:45
|
作者
Deng, Qiang [1 ]
Zheng, Fenghua [1 ]
Zhong, Wentao [1 ]
Pan, Qichang [1 ]
Liu, Yanzhen [1 ]
Li, Youpeng [1 ]
Chen, Guilin [1 ]
Li, Yunsha [1 ]
Yang, Chenghao [1 ]
Liu, Meilin [2 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, New Energy Res Inst, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
中国国家自然科学基金;
关键词
Potassium ion batteries; Cathode; P3-type layered oxides; Solvent-thermal; Microspheres; METAL-ORGANIC FRAMEWORKS; RICH LAYERED OXIDE; ELECTROCHEMICAL PROPERTIES; SURFACE MODIFICATION; CARBON NANOTUBES; ANODE MATERIAL; LITHIUM; SODIUM; CAPACITY; INTERCALATION;
D O I
10.1016/j.cej.2019.123735
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Potassium ion batteries (PIBs) have been considered as promising candidates for large-scale energy storage due to their high operating voltage and low cost. Nevertheless, the inferior cycling stability and rate capability of cathode materials hinder their practical applications. Herein, we synthesized P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres with high tap density as cathode materials for PIBs through solvent-thermal method. The as-prepared materials are densely packed secondary microspheres that consist of submicron-sized primary particles. The unique hierarchical structure can not only effectively facilitate potassium-ion transport owing to short diffusion distance, but also withstand high stress that caused by continuous K+ intercalation/deintercalation. As a result, when tested as cathode materials for PIBs, P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres deliver a reversible capacity of 82.5 mA h g(-1) at 10 mA g(-1), superior rate capability with a capacity of 57.9 mA h g(-1) at 500 mA g(-1), and excellent cycling stability with 85% capacity retention after 100 cycles at 50 mA g(-1). Even cycled at 200 mA g(-1), it still maintains 75% capacity retention after 300 cycles. Moreover, P3-type K0.5Mn0.72Ni0.15Co0.13O2 microspheres with high tap density can increase compaction density of electrode, and thus obtain a high volumetric energy density of 121.1 W h L-1 based on the cathode electrode volume. This study provides a feasible way to develop high energy density PIBs with excellent cycling stability and rate capability.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A high-performance cathode for potassium-ion batteries based on uniform P3-type K0.5Mn0.8Co0.1Ni0.1O2 porous microcuboids
    Duan, Liping
    Xu, Yifan
    Zhang, Zhuangzhuang
    Xu, Jingyi
    Liao, Jiaying
    Xu, Jianzhi
    Sun, Yingying
    He, Yanan
    Zhou, Xiaosi
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (40) : 22820 - 22826
  • [2] Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries
    Duan, Liping
    Xu, Jianzhi
    Xu, Yifan
    Tian, Ruiqi
    Sun, Yingying
    Zhu, Chuannan
    Mo, Xiangyin
    Zhou, Xiaosi
    JOURNAL OF ENERGY CHEMISTRY, 2023, 76 : 332 - 338
  • [3] Cocoon-shaped P3-type K0.5Mn0.7Ni0.3O2 as an advanced cathode material for potassium-ion batteries
    Liping Duan
    Jianzhi Xu
    Yifan Xu
    Ruiqi Tian
    Yingying Sun
    Chuannan Zhu
    Xiangyin Mo
    Xiaosi Zhou
    Journal of Energy Chemistry, 2023, 76 (01) : 332 - 338
  • [4] P3-type layered K0.48Mn0.4Co0.6O2: a novel cathode material for potassium-ion batteries
    Sada, Krishnakanth
    Barpanda, Prabeer
    CHEMICAL COMMUNICATIONS, 2020, 56 (15) : 2272 - 2275
  • [5] Yolk–Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Jiaxin Hao
    Ke Xiong
    Jiang Zhou
    Apparao M. Rao
    Xianyou Wang
    Huan Liu
    Bingan Lu
    Energy & Environmental Materials, 2022, (01) : 261 - 269
  • [6] Yolk–Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Hao, Jiaxin
    Xiong, Ke
    Zhou, Jiang
    Rao, Apparao M.
    Wang, Xianyou
    Liu, Huan
    Lu, Bingan
    Energy and Environmental Materials, 2022, 5 (01): : 261 - 269
  • [7] Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode
    Ramasamy, Hari Vignesh
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Lee, Yun-Sung
    CHEMICAL ENGINEERING JOURNAL, 2019, 368 : 235 - 243
  • [8] Superior potassium-ion hybrid capacitor based on novel P3-type layered K0.45Mn0.5Co0.5O2 as high capacity cathode
    Ramasamy, Hari Vignesh
    Senthilkumar, Baskar
    Barpanda, Prabeer
    Lee, Yun-Sung
    Chemical Engineering Journal, 2020, 368 : 235 - 243
  • [9] Yolk-Shell P3-Type K0.5[Mn0.85Ni0.1Co0.05]O2: A Low-Cost Cathode for Potassium-Ion Batteries
    Hao, Jiaxin
    Xiong, Ke
    Zhou, Jiang
    Rao, Apparao M.
    Wang, Xianyou
    Liu, Huan
    Lu, Bingan
    ENERGY & ENVIRONMENTAL MATERIALS, 2022, 5 (01) : 261 - 269
  • [10] Layered P2-Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High-Energy Potassium-Ion Batteries
    Deng, Tao
    Fan, Xiulin
    Chen, Ji
    Chen, Long
    Luo, Chao
    Zhou, Xiuquan
    Yang, Junhe
    Zheng, Shiyou
    Wang, Chunsheng
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (28)