Block diagonal representation learning with local invariance for face clustering

被引:0
|
作者
Wang L. [1 ]
Chen S. [1 ]
Yin M. [2 ]
Hao Z. [1 ,3 ]
Cai R. [1 ]
机构
[1] School of Computer, Guangdong University of Technology, Guangzhou
[2] School of Semiconductor Science and Technology and Institute of Semiconductor, South China Normal University, Foshan
[3] College of Science, Shantou University, Shantou
基金
中国国家自然科学基金;
关键词
Block diagonal representation; Diffusion Processing; Face clustering; Manifold learning; Subspace clustering;
D O I
10.1007/s00500-024-09698-9
中图分类号
学科分类号
摘要
Facial data under non-rigid deformation are often assumed lying on a highly non-linear manifold. The conventional subspace clustering methods, such as Block Diagonal Representation (BDR), can only handle the high-dimensionality of facial data, ignoring the useful non-linear property embedded in data. Yet, discovering the local invariance in facial data remains a critical issue for face clustering. To this end, we propose a novel Block Diagonal Representation via Manifold learning (BDRM) in this paper. To be concrete, the manifold information within facial data can be learned by Locally Linear Embedding (LLE). Then manifold structure and block diagonal representation are considered jointly to uncover the intrinsic structure of facial data, which leads to a better representation for subsequent clustering task. Furthermore, the diffusion process is adopted to derive the final affinity matrix with context-sensitive, by which the learned affinity matrix can be spread and re-evaluated to enhance the connectivity of data belonging to the same intra-subspace. The extensive experimental results show that our proposed approach achieves a superior clustering performance against the state-of-the-art methods on both synthetic data and real-world facial data. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:8133 / 8149
页数:16
相关论文
共 50 条
  • [41] Local Invariance Representation Learning Algorithm with Multi-layer Extreme Learning Machine
    Jia, Xibin
    Li, Xiaobo
    Du, Hua
    Bhanu, Bir
    NEURAL INFORMATION PROCESSING, ICONIP 2016, PT IV, 2016, 9950 : 505 - 513
  • [42] Virtual samples based robust block-diagonal dictionary learning for face recognition
    Wang, Shuangxi
    Ge, Hongwei
    Yang, Jinlong
    Su, Shuzhi
    INTELLIGENT DATA ANALYSIS, 2021, 25 (05) : 1273 - 1290
  • [43] One-step multiple kernel k-means clustering based on block diagonal representation
    Chen, Cuiling
    Li, Zhi
    EXPERT SYSTEMS, 2024, 41 (12)
  • [44] Robust multiple kernel subspace clustering with block diagonal representation and low-rank consensus kernel
    Zhang, Xiaoqian
    Xue, Xuqian
    Sun, Huaijiang
    Liu, Zhigui
    Guo, Li
    Guo, Xin
    KNOWLEDGE-BASED SYSTEMS, 2021, 227
  • [45] Membership Representation for Detecting Block-diagonal Structure in Low-rank or Sparse Subspace Clustering
    Lee, Minsik
    Lee, Jieun
    Lee, Hyeogjin
    Kwak, Nojun
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 1648 - 1656
  • [46] On invariance and selectivity in representation learning
    Anselmi, Fabio
    Rosasco, Lorenzo
    Poggio, Tomaso
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2016, 5 (02) : 134 - 158
  • [47] Subspace Clustering via Block-Diagonal Decomposition
    Zhiqiang FU
    Yao ZHAO
    Dongxia CHANG
    Yiming WANG
    Chinese Journal of Electronics, 2024, 33 (06) : 1373 - 1382
  • [48] Ordered Subspace Clustering With Block-Diagonal Priors
    Wu, Fei
    Hu, Yongli
    Gao, Junbin
    Sun, Yanfeng
    Yin, Baocai
    IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3209 - 3219
  • [49] Subspace Clustering via Block-Diagonal Decomposition
    Fu, Zhiqiang
    Zhao, Yao
    Chang, Dongxia
    Wang, Yiming
    CHINESE JOURNAL OF ELECTRONICS, 2024, 33 (06) : 1373 - 1382
  • [50] Block Diagonal Least Squares Regression for Subspace Clustering
    Fan, Lili
    Lu, Guifu
    Liu, Tao
    Wang, Yong
    ELECTRONICS, 2022, 11 (15)