Block diagonal representation learning with local invariance for face clustering

被引:0
|
作者
Wang L. [1 ]
Chen S. [1 ]
Yin M. [2 ]
Hao Z. [1 ,3 ]
Cai R. [1 ]
机构
[1] School of Computer, Guangdong University of Technology, Guangzhou
[2] School of Semiconductor Science and Technology and Institute of Semiconductor, South China Normal University, Foshan
[3] College of Science, Shantou University, Shantou
基金
中国国家自然科学基金;
关键词
Block diagonal representation; Diffusion Processing; Face clustering; Manifold learning; Subspace clustering;
D O I
10.1007/s00500-024-09698-9
中图分类号
学科分类号
摘要
Facial data under non-rigid deformation are often assumed lying on a highly non-linear manifold. The conventional subspace clustering methods, such as Block Diagonal Representation (BDR), can only handle the high-dimensionality of facial data, ignoring the useful non-linear property embedded in data. Yet, discovering the local invariance in facial data remains a critical issue for face clustering. To this end, we propose a novel Block Diagonal Representation via Manifold learning (BDRM) in this paper. To be concrete, the manifold information within facial data can be learned by Locally Linear Embedding (LLE). Then manifold structure and block diagonal representation are considered jointly to uncover the intrinsic structure of facial data, which leads to a better representation for subsequent clustering task. Furthermore, the diffusion process is adopted to derive the final affinity matrix with context-sensitive, by which the learned affinity matrix can be spread and re-evaluated to enhance the connectivity of data belonging to the same intra-subspace. The extensive experimental results show that our proposed approach achieves a superior clustering performance against the state-of-the-art methods on both synthetic data and real-world facial data. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:8133 / 8149
页数:16
相关论文
共 50 条
  • [1] Block diagonal representation learning for robust subspace clustering
    Wang, Lijuan
    Huang, Jiawen
    Yin, Ming
    Cai, Ruichu
    Hao, Zhifeng
    INFORMATION SCIENCES, 2020, 526 : 54 - 67
  • [2] Fast subspace clustering by learning projective block diagonal representation *
    Xu, Yesong
    Chen, Shuo
    Li, Jun
    Xu, Chunyan
    Yang, Jian
    PATTERN RECOGNITION, 2023, 135
  • [3] Subspace Clustering by Block Diagonal Representation
    Lu, Canyi
    Feng, Jiashi
    Lin, Zhouchen
    Mei, Tao
    Yan, Shuicheng
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (02) : 487 - 501
  • [4] Ensemble clustering by block diagonal representation
    Yang, Xiaofei
    Cheng, Nuo
    Ma, Yingcang
    Xing, Zhiwei
    Xin, Xiaolong
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):
  • [5] Learning Robust Face Representation With Classwise Block-Diagonal Structure
    Li, Yong
    Liu, Jing
    Lu, Hanqing
    Ma, Songde
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2014, 9 (12) : 2051 - 2062
  • [6] Subspace Clustering by Relaxed Block Diagonal Representation
    Wang, Qian
    Wang, Weiwei
    Feng, Xiangchu
    THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019), 2019, : 343 - 348
  • [7] Structured block diagonal representation for subspace clustering
    Maoshan Liu
    Yan Wang
    Jun Sun
    Zhicheng Ji
    Applied Intelligence, 2020, 50 : 2523 - 2536
  • [8] Structured block diagonal representation for subspace clustering
    Liu, Maoshan
    Wang, Yan
    Sun, Jun
    Ji, Zhicheng
    APPLIED INTELLIGENCE, 2020, 50 (08) : 2523 - 2536
  • [9] Subspace Clustering with Block Diagonal Sparse Representation
    Fang, Xian
    Zhang, Ruixun
    Li, Zhengxin
    Shao, Xiuli
    NEURAL PROCESSING LETTERS, 2021, 53 (06) : 4293 - 4312
  • [10] Subspace Clustering with Block Diagonal Sparse Representation
    Xian Fang
    Ruixun Zhang
    Zhengxin Li
    Xiuli Shao
    Neural Processing Letters, 2021, 53 : 4293 - 4312