C 2DR: Robust Cross-Domain Recommendation based on Causal Disentanglement

被引:1
|
作者
Kong Menglin [1 ,3 ]
Wang, Jia [2 ]
Pan, Yushan [2 ]
Zhang, Haiyang [2 ]
Hou, Muzhou [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Peoples R China
[2] Xian Jiaotong Liverpool Univ, Sch Adv Technol, Suzhou, Peoples R China
[3] Xian Jiaotong Liverpool Univ, Suzhou, Peoples R China
关键词
Cross-Domain Recommendation; Knowledge Transfer; Causal Disentanglement;
D O I
10.1145/3616855.3635809
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cross-domain recommendation aims to leverage heterogeneous information to transfers knowledge from a data-sufficient domain (source domain) to a data-scarce domain (target domain). Existing approaches mainly ignore the modeling of users' domain specific preferences on items. We argue that incorporating domain-specific preferences from the source domain will introduce irrelevant information that fails to the target domain. Additionally, directly combining domain-shared and domain-specific information may hinder the target domain's performance. To this end, we propose (CDR)-D-2, a novel approach that disentangles domain-shared and domain-specific preferences from a causal perspective. Specifically, we formulate a causal graph to capture the critical causal relationships based on the underlying recommendation process, explicitly identifying domain-shared and domain-specific information as causal irrelevant variables. Then, we introduce disentanglement regularization terms to learn distinct representations of the causal variables that obey the independence constraints in the causal graph. Remarkably, our proposed method enables effective intervention and transfer of domain-shared information, thereby improving the robustness of the recommendation model. We evaluate the efficacy of (CDR)-D-2 through extensive experiments on three real-world datasets, demonstrating significant improvements over state-of-the-art baselines. The code is available at: https://github.com/KongMLin/(CDR)-D-2.
引用
收藏
页码:341 / 349
页数:9
相关论文
共 50 条
  • [21] Cross-domain recommendation with user personality
    Wang, Hanfei
    Zuo, Yuan
    Li, Hong
    Wu, Junjie
    KNOWLEDGE-BASED SYSTEMS, 2021, 213 (213)
  • [22] Explainable Cross-Domain Collaborator Recommendation
    Hu, Zhenyu
    Zhou, Jingya
    Zhang, Congcong
    Shi, Yingdan
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3224 - 3229
  • [23] Neural Attentive Cross-Domain Recommendation
    Rafailidis, Dimitrios
    Crestani, Fabio
    PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, : 164 - 171
  • [24] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [25] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [26] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [27] Domain Adaptation via Feature Disentanglement for cross-domain image classification
    Wu, Zhi-Ze
    Du, Chang-Jiang
    Wang, Xin-Qi
    Zou, Le
    Cheng, Fan
    Li, Teng
    Nian, Fu-Dong
    Weise, Thomas
    Wang, Xiao-Feng
    APPLIED SOFT COMPUTING, 2025, 172
  • [28] PPGenCDR: A Stable and Robust Framework for Privacy-Preserving Cross-Domain Recommendation
    Liao, Xinting
    Liu, Weiming
    Zheng, Xiaolin
    Yao, Binhui
    Chen, Chaochao
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4453 - 4461
  • [29] Cross-domain incremental recommendation system based on meta learning
    Shih C.-W.
    Lu C.-H.
    Hwang I.-S.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (12) : 16563 - 16574
  • [30] Cross-Domain Developer Recommendation Algorithm Based on Feature Matching
    Yu, Xu
    He, Yadong
    Fu, Yu
    Xin, Yu
    Du, Junwei
    Ni, Weijian
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2019, 2019, 1042 : 443 - 457