Classification and Early Detection of Solar Panel Faults with Deep Neural Network Using Aerial and Electroluminescence Images

被引:0
|
作者
Jaybhaye, Sangita [1 ]
Sirvi, Vishal [1 ]
Srivastava, Shreyansh [1 ]
Loya, Vaishnav [1 ]
Gujarathi, Varun [1 ]
Jaybhaye, M. D. [2 ]
机构
[1] Vishwakarma Inst Technol, Dept Comp Engn, Pune, India
[2] COEP Technol Univ, Dept Mfg Engn & Ind Management, Pune, India
关键词
Early detection; Fault classification; Aerial images; Electroluminescence images; Solar panels;
D O I
10.1007/s11668-024-01959-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents an innovative approach to detect solar panel defects early, leveraging distinct datasets comprising aerial and electroluminescence (EL) images. The decision to employ separate datasets with different models signifies a strategic choice to harness the unique strengths of each imaging modality. Aerial images provide comprehensive surface-level insights, while electroluminescence images offer valuable information on internal defects. By using these datasets with specialized models, the study aims to improve defect detection accuracy and reliability. The research explores the effectiveness of modified deep learning models, including DenseNet121 and MobileNetV3, for analyzing aerial images, and introduces a customized architecture and EfficientNetV2B2 models for electroluminescence image analysis. Results indicate promising accuracies for DenseNet121 (93.75%), MobileNetV3 (93.26%), ELFaultNet (customized architecture) (91.62%), and EfficientNetV2B2 (81.36%). This study's significance lies in its potential to transform solar panel maintenance practices, enabling early defect identification and subsequent optimization of energy production.
引用
收藏
页码:1746 / 1758
页数:13
相关论文
共 50 条
  • [31] Jaundice detection by deep convolutional neural network using smartphone images
    Su, Tung-Hung
    Li, Jia-Wei
    Chen, Shann-Ching
    Jiang, Pei-Ying
    Kao, Jia-Horng
    Chou, Cheng-Fu
    JOURNAL OF HEPATOLOGY, 2021, 75 : S629 - S629
  • [32] Microaneurysms and Exudates Detection in Retinal Images using Deep Neural Network
    Maldhure, P. N.
    Ganorkar, S. R.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02)
  • [33] Gastric polyp detection in gastroscopic images using deep neural network
    Cao, Chanting
    Wang, Ruilin
    Yu, Yao
    Zhang, Hui
    Yu, Ying
    Sun, Changyin
    PLOS ONE, 2021, 16 (04):
  • [34] Deep Learning Neural Network for Unconventional Images Classification
    Xu, Wei
    Parvin, Hamid
    Izadparast, Hadi
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 169 - 185
  • [35] Deep Learning Neural Network for Unconventional Images Classification
    Wei Xu
    Hamid Parvin
    Hadi Izadparast
    Neural Processing Letters, 2020, 52 : 169 - 185
  • [36] Deep Neural Network for Melanoma Classification in Dermoscopic Images
    Wang Jiahao
    Jin Xingguang
    Yuan, Wenjie
    Luo, Zhenyi
    Yu, Zhengyang
    2021 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS AND COMPUTER ENGINEERING (ICCECE), 2021, : 666 - 669
  • [37] Bearing faults classification using THH and neural network
    Kabla, A.
    Mokrani, K.
    International Journal of Computer Science Issues, 2012, 9 (02): : 552 - 558
  • [38] Classification of Bone Tumor on CT Images Using Deep Convolutional Neural Network
    Li, Yang
    Zhou, Wenyu
    Lv, Guiwen
    Luo, Guibo
    Zhu, Yuesheng
    Liu, Ji
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 127 - 136
  • [39] Multi-Classification of Brain Tumor Images Using Deep Neural Network
    Sultan, Hossam H.
    Salem, Nancy M.
    Al-Atabany, Walid
    IEEE ACCESS, 2019, 7 : 69215 - 69225
  • [40] Breast Lesion Classification in Ultrasound Images Using Deep Convolutional Neural Network
    Zeimarani, Bashir
    Fernandes Costa, Marly Guimaraes
    Nurani, Nilufar Zeimarani
    Bianco, Sabrina Ramos
    De Albuquerque Pereira, Wagner Coelho
    Costa Filho, Cicero Ferreira Fernandes
    IEEE ACCESS, 2020, 8 : 133349 - 133359