One-Dimensional Lazy Quantum Walk in Ternary System

被引:5
|
作者
Saha A. [1 ,2 ]
Mandal B. [2 ,3 ]
Saha D. [2 ]
Chakrabarti A. [2 ]
机构
[1] Atos, Pune
[2] A. K. Choudhury School of Information Technology, University of Calcutta, Kolkata
[3] Regent Institute of Science and Technology, Barrackpore
来源
Saha, Amit (abamitsaha@gmail.com) | 1600年 / Institute of Electrical and Electronics Engineers Inc.卷 / 02期
关键词
Lazy quantum walk (LQW); quantum circuit; quantum walk; ternary quantum system;
D O I
10.1109/TQE.2021.3074707
中图分类号
学科分类号
摘要
Quantum walks play an important role for developing quantum algorithms and quantum simulations. Here, we introduce a first of its kind one-dimensional lazy quantum walk in the ternary quantum domain and show its equivalence for circuit realization in ternary quantum logic. Using an appropriate logical mapping of the position space on which a walker evolves onto the multiqutrit states, we present efficient quantum circuits for the implementation of lazy quantum walks in one-dimensional position space in ternary quantum system. We also address scalability in terms of n-qutrit ternary system with example circuits for a three-qutrit state space. © 2021 by the Author(s).
引用
收藏
相关论文
共 50 条
  • [21] Classical random walk with memory versus quantum walk on a one-dimensional infinite chain
    Wu, Jingfeng
    Xu, Peng
    Zhu, Xuanmin
    PHYSICS LETTERS A, 2019, 383 (20) : 2389 - 2393
  • [22] Quantum teleportation in one-dimensional quantum dots system
    Wang, HF
    Kais, S
    CHEMICAL PHYSICS LETTERS, 2006, 421 (4-6) : 338 - 342
  • [23] Implementation of a one-dimensional quantum walk in both position and phase spaces
    Qin Hao
    Xue Peng
    CHINESE PHYSICS B, 2014, 23 (01)
  • [24] Implementation of a one-dimensional quantum walk in both position and phase spaces
    秦豪
    薛鹏
    Chinese Physics B, 2014, (01) : 59 - 63
  • [25] Unveiling hidden topological phases of a one-dimensional Hadamard quantum walk
    Obuse, Hideaki
    Asboth, Janos K.
    Nishimura, Yuki
    Kawakami, Norio
    PHYSICAL REVIEW B, 2015, 92 (04):
  • [26] Two component quantum walk in one-dimensional lattice with hopping imbalance
    Giri, Mrinal Kanti
    Mondal, Suman
    Das, Bhanu Pratap
    Mishra, Tapan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [27] Generation of hybrid maximally entangled states in a one-dimensional quantum walk
    Gratsea, Aikaterini
    Lewenstein, Maciej
    Dauphin, Alexandre
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02)
  • [28] Conditional limit measure of a one-dimensional quantum walk with an absorbing sink
    Sabri, Mohamed
    Segawa, Etsuo
    Stefanak, Martin
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [29] Two component quantum walk in one-dimensional lattice with hopping imbalance
    Mrinal Kanti Giri
    Suman Mondal
    Bhanu Pratap Das
    Tapan Mishra
    Scientific Reports, 11
  • [30] Symmetries, topological phases, and bound states in the one-dimensional quantum walk
    Asboth, J. K.
    PHYSICAL REVIEW B, 2012, 86 (19):