Lower Local Uniform Monotonicity in F-Normed Musielak-Orlicz Spaces

被引:0
|
作者
Liu, Yanli [1 ]
Xue, Yangyang [1 ]
Cui, Yunan [1 ]
机构
[1] Harbin Univ Sci & Technol, Dept Math, Harbin 150080, Peoples R China
关键词
Musielak-Orlicz spaces; Mazur-Orlicz F-norm; F-norm K & ouml; the spaces; lower strict monotonicity point; lower local uniform monotonicity point;
D O I
10.3390/axioms13040243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lower strict monotonicity points and lower local uniform monotonicity points are considered in the case of Musielak-Orlicz function spaces L-Phi endowed with the Mazur-Orlicz F-norm. The findings outlined in this study extend the scope of geometric characteristics observed in F-normed Orlicz spaces, as well as monotonicity properties within specific F-normed lattices. They are suitable for the Orlicz spaces of ordered continuous elements, specifically in relation to the Mazur-Orlicz F-norm. In addition, in this paper presents results that can be used to derive certain monotonicity properties in F-normed Musielak-Orlicz spaces.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Difference sequence spaces in n-normed spaces defined by Musielak-Orlicz function
    Raj, Kuldip
    Sharma, Sunil K.
    Sharma, Ajay K.
    ARMENIAN JOURNAL OF MATHEMATICS, 2011, 3 (03): : 127 - 141
  • [32] Uniform Gateaux differentiability and weak uniform rotundity of Musielak-Orlicz function spaces
    Fang, LL
    Fu, WT
    Hudzik, H
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (08) : 1133 - 1149
  • [33] On some global and local geometric properties of Musielak-Orlicz spaces
    Hudzik, H
    Kowalewski, W
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2005, 67 (1-2): : 41 - 64
  • [34] The Daugavet property in the Musielak-Orlicz spaces
    Kaminska, Anna
    Kubiak, Damian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) : 873 - 898
  • [35] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [36] Sobolev inequalities for Musielak-Orlicz spaces
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MANUSCRIPTA MATHEMATICA, 2018, 155 (1-2) : 209 - 227
  • [37] Musielak-Orlicz Campanato spaces and applications
    Liang, Yiyu
    Yang, Dachun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) : 307 - 322
  • [38] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [39] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [40] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584