Oscillations of Fourier coefficients over the sparse set of integers

被引:1
|
作者
Vaishya, Lalit [1 ]
机构
[1] Indian Stat Inst, Stat Math Unit, 7 SJS Sansanwal Marg, New Delhi 110016, India
来源
MONATSHEFTE FUR MATHEMATIK | 2024年 / 204卷 / 03期
关键词
Fourier coefficients of cusp form; Triple product L function; Symmetric power L functions; Asymptotic behaviour; Binary quadratic form; CUSP FORMS; SUMS;
D O I
10.1007/s00605-024-01989-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f is an element of S-k(Gamma(0)(N))be a normalized Hecke eigenforms of integral weightkand level N >= 1. In the article, we establish the asymptotics of power moment associated to the sequences {lambda(f circle times f circle times f )(Q(x))}Q(is an element of)S(D),(x is an element of)Z(2 )and {lambda(2 )(f circle times sym)(f)(Q(x))}Q(is an element of)S(D),(x is an element of)Z(2 )where S(D )denotes the set of inequivalent primitive integral positive-definite binary quadraticforms (reduced forms) of fixed discriminant D<0.As a consequence, we prove results concerning the behaviour of sign changes associated to these sequences.
引用
收藏
页码:601 / 623
页数:23
相关论文
共 50 条