The Average Behaviors of the Fourier Coefficients of j-th Symmetric Power L-Function over Two Sparse Sequences of Positive Integers

被引:0
|
作者
Liu H. [1 ]
Yang X. [1 ]
机构
[1] School of Mathematics and Statistics, Shandong Normal University, Shandong, Jinan
基金
中国国家自然科学基金;
关键词
Dirichlet character; Fourier coefficients; j-th symmetric L-function;
D O I
10.1007/s41980-023-00850-z
中图分类号
学科分类号
摘要
Suppose that x is a sufficiently large number and j≥ 2 is any integer. Let L(s, sym jf) be the j-th symmetric power L-function associated with the primitive holomorphic cusp form f of weight k for the full modular group SL 2(Z) . Also, let λsymjf(n) be the n-th normalized Dirichlet coefficient of L(s, sym jf) . In this paper, we establish asymptotic formulas for sums of Dirichlet coefficients λsymjf(n) over two sparse sequences of positive integers, which improves previous results. © 2024, The Author(s) under exclusive licence to Iranian Mathematical Society.
引用
收藏
相关论文
共 4 条