Research on Anomaly Detection in Vehicular CAN Based on Bi-LSTM

被引:0
|
作者
Kan X. [1 ]
Zhou Z. [2 ,3 ]
Yao L. [1 ]
Zuo Y. [1 ]
机构
[1] School of Cyber Science and Engineering, Shanghai Jiao Tong University, Shanghai
[2] Institute of Cyber Science and Technology, Shanghai Jiao Tong University, Shanghai
[3] Shanghai Key Laboratory of Integrated Administration Technologies for Information Security, Shanghai
来源
关键词
anomaly detection; Bi-LSTM; CAN; Internet of vehicles;
D O I
10.13052/jcsm2245-1439.1251
中图分类号
学科分类号
摘要
Controller Area Network (CAN) is one of the most widely used in-vehicle networks in modern vehicles. Due to the lack of security mechanisms such as encryption and authentication, CAN is vulnerable to external hackers in the intelligent network environment. In the paper, a lightweight CAN bus anomaly detection model based on the Bi-LSTM model is proposed. The Bi-LSTM model learns ID sequence correlation features to detect anomalies. At the same time, the Attention mechanism is introduced to improve the model’s efficiency. The paper focuses on replay attacks, denial of service attacks and fuzzing attacks. The experimental results show that the anomaly detection model based on Bi-LSTM can detect three attack types quickly and accurately. © 2023 River Publishers.
引用
收藏
页码:629 / 652
页数:23
相关论文
共 50 条
  • [21] Wood broken defect detection with laser profilometer based on Bi-LSTM network
    Xu, Zhezhuang
    Lin, Ye
    Chen, Dan
    Yuan, Meng
    Zhu, Yuhang
    Ai, Zhijie
    Yuan, Yazhou
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [22] Nomadic people optimisation based Bi-LSTM for detection and tracking of tropical cyclone
    Rajini, S. Akila
    Tamilpavai, G.
    JOURNAL OF EARTH SYSTEM SCIENCE, 2023, 132 (01)
  • [23] Feature Envy Detection based on Bi-LSTM with Self-Attention Mechanism
    Wang, Hongze
    Liu, Jing
    Kang, JieXiang
    Yin, Wei
    Sun, Haiying
    Wang, Hui
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 448 - 457
  • [24] Attention-based Bi-LSTM Model for Anomalous HTTP Traffic Detection
    Yu, Yuqi
    Liu, Guannan
    Yan, Hanbing
    Li, Hong
    Guan, Hongchao
    2018 15TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM), 2018,
  • [25] Sql injection detection algorithm based on Bi-LSTM and integrated feature selection
    Qin, Qiurong
    Li, Yueqin
    Mi, Yajie
    Shen, Jinhui
    Wu, Kexin
    Wang, Zhenzhao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [26] Stock recommendation based on depth BRNN and Bi-LSTM
    Liu, ChangWei
    Wang, Hao
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 751 - 755
  • [27] Event Detection and Analysis in Thai News Using Bi-LSTM
    Songklang, Kallaya
    Lee, Wilaiporn
    Prayote, Akara
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,
  • [28] Depth Inversion of Coastal Waters Based on Bi-LSTM
    Pan Xinliang
    Yang Renhui
    Jiang Tao
    Sui Baikai
    Liu Chenxi
    Zhang Zhen
    ACTA OPTICA SINICA, 2021, 41 (10)
  • [29] Smart Contract Classification With a Bi-LSTM Based Approach
    Tian, Gang
    Wang, Qibo
    Zhao, Yi
    Guo, Lantian
    Sun, Zhonglin
    Lv, Liangyu
    IEEE ACCESS, 2020, 8 : 43806 - 43816
  • [30] Epilepsy Detection using Bi-LSTM with Explainable Artificial Intelligence
    Rathod, Prajakta
    Bhalodiya, Jayendra
    Naik, Shefali
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,