INSPIRE, a publicly available research dataset for perioperative medicine

被引:4
|
作者
Lim, Leerang [1 ]
Lee, Hyeonhoon [2 ]
Jung, Chul-Woo [1 ]
Sim, Dayeon [1 ]
Borrat, Xavier [3 ,4 ]
Pollard, Tom J. [5 ]
Celi, Leo A. [5 ,6 ,7 ]
Mark, Roger G. [5 ]
Vistisen, Simon T. [8 ,9 ]
Lee, Hyung-Chul [1 ,10 ]
机构
[1] Seoul Natl Univ, Seoul Natl Univ Hosp, Dept Anesthesiol & Pain Med, Coll Med, Seoul, South Korea
[2] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul, South Korea
[3] Hosp Clin Barcelona, Dept Anesthesia, Barcelona, Spain
[4] Hosp Clin Barcelona, Clin Informat Dept, Barcelona, Spain
[5] MIT, Lab Computat Physiol, Cambridge, MA USA
[6] Beth Israel Deaconess Med Ctr, Div Pulm Crit Care & Sleep Med, Boston, MA USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA USA
[8] Aarhus Univ, Inst Clin Med, Aarhus, Denmark
[9] Aarhus Univ Hosp, Dept Anaesthesiol & Intens Care, Aarhus, Denmark
[10] Seoul Natl Univ Hosp, Innovat Med Technol Res Inst, Seoul, South Korea
基金
美国国家科学基金会;
关键词
D O I
10.1038/s41597-024-03517-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present the INSPIRE dataset, a publicly available research dataset in perioperative medicine, which includes approximately 130,000 surgical operations at an academic institution in South Korea over a ten-year period between 2011 and 2020. This comprehensive dataset includes patient characteristics such as age, sex, American Society of Anesthesiologists physical status classification, diagnosis, surgical procedure code, department, and type of anaesthesia. The dataset also includes vital signs in the operating theatre, general wards, and intensive care units (ICUs), laboratory results from six months before admission to six months after discharge, and medication during hospitalisation. Complications include total hospital and ICU length of stay and in-hospital death. We hope this dataset will inspire collaborative research and development in perioperative medicine and serve as a reproducible external validation dataset to improve surgical outcomes.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] RESEARCH TRADITIONS AVAILABLE TO FAMILY MEDICINE
    GORDON, MJ
    JOURNAL OF FAMILY PRACTICE, 1978, 7 (01): : 59 - 68
  • [32] A publicly available deep learning model and dataset for segmentation of breast, fibroglandular tissue, and vessels in breast MRI
    Christopher O. Lew
    Majid Harouni
    Ella R. Kirksey
    Elianne J. Kang
    Haoyu Dong
    Hanxue Gu
    Lars J. Grimm
    Ruth Walsh
    Dorothy A. Lowell
    Maciej A. Mazurowski
    Scientific Reports, 14
  • [33] CMRxRecon: A publicly available k-space dataset and benchmark to advance deep learning for cardiac MRI
    Wang, Chengyan
    Lyu, Jun
    Wang, Shuo
    Qin, Chen
    Guo, Kunyuan
    Zhang, Xinyu
    Yu, Xiaotong
    Li, Yan
    Wang, Fanwen
    Jin, Jianhua
    Shi, Zhang
    Xu, Ziqiang
    Tian, Yapeng
    Hua, Sha
    Chen, Zhensen
    Liu, Meng
    Sun, Mengting
    Kuang, Xutong
    Wang, Kang
    Wang, Haoran
    Li, Hao
    Chu, Yinghua
    Yang, Guang
    Bai, Wenjia
    Zhuang, Xiahai
    Wang, He
    Qin, Jing
    Qu, Xiaobo
    SCIENTIFIC DATA, 2024, 11 (01)
  • [34] Pulse rate estimation using imaging photoplethysmography: generic framework and comparison of methods on a publicly available dataset
    Unakafov, Anton M.
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2018, 4 (04):
  • [35] A publicly available deep learning model and dataset for segmentation of breast, fibroglandular tissue, and vessels in breast MRI
    Lew, Christopher O.
    Harouni, Majid
    Kirksey, Ella R.
    Kang, Elianne J.
    Dong, Haoyu
    Gu, Hanxue
    Grimm, Lars J.
    Walsh, Ruth
    Lowell, Dorothy A.
    Mazurowski, Maciej A.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [36] Benefits of Publicly Available Data
    Barnett, Adrian G.
    Huang, Cunrui
    Turner, Lyle
    EPIDEMIOLOGY, 2012, 23 (03) : 500 - 501
  • [37] UK government to provide a research portal to make publicly funded research freely available to all
    Hawkes, Nigel
    BRITISH MEDICAL JOURNAL, 2012, 344
  • [38] Scarcity of publicly available oral cancer image datasets for machine learning research
    Sengupta, Namrata
    Sarode, Sachin C.
    Sarode, Gargi S.
    Ghone, Urmi
    ORAL ONCOLOGY, 2022, 126
  • [39] Democratizing Deep Learning Research Through Large Publicly Available Datasets and Tools
    Dubis, Adam M.
    Arikan, Mustafa
    Sallo, Ferenc
    Montesel, Andrea
    Hagag, Ahmed M.
    Ahmed, Hend M.
    Book, Marius
    Faatz, Hendrik
    Cicinelli, Maria
    Ongun, Sevim
    Fawzi, Amani A.
    Lilaonitkul, Watjana
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2021, 62 (08)
  • [40] PUBLICLY AVAILABLE NATIONAL DATA FOR AGING AND HEALTH DISPARITIES RESEARCH: IMPLICATIONS TO GERONTOLOGISTS
    Kim, G.
    Bryant, A. N.
    Ford, K.
    Huang, C.
    Weech-Maldonado, R.
    Parmelee, P. A.
    GERONTOLOGIST, 2014, 54 : 47 - 47