Benchmarking Federated Learning Frameworks for Medical Imaging Tasks

被引:1
|
作者
Fonio, Samuele [1 ]
机构
[1] Univ Turin, Turin, Italy
关键词
Federated Learning; Medical Image Classification; Scalability; Usability; FL Frameworks; Benchmark; Real Case Deployment; Cross Silo; PRIVACY;
D O I
10.1007/978-3-031-51026-7_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a comprehensive benchmarking study of various Federated Learning (FL) frameworks applied to the task of Medical Image Classification. The research specifically addresses the often neglected and complex aspects of scalability and usability in off-the-shelf FL frameworks. Through experimental validation using real case deployments, we provide empirical evidence of the performance and practical relevance of open source FL frameworks. Our findings contribute valuable insights for anyone interested in deploying a FL system, with a particular focus on the healthcare domain-an increasingly attractive field for FL applications.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [31] Loci: Federated Continual Learning of Heterogeneous Tasks at Edge
    Luopan, Yaxin
    Han, Rui
    Zhang, Qinglong
    Zuo, Xiaojiang
    Liu, Chi Harold
    Wang, Guoren
    Chen, Lydia Y.
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2025, 36 (04) : 775 - 790
  • [32] Survey of Federated Learning Open-Source Frameworks
    Lin W.
    Shi F.
    Zeng L.
    Li D.
    Xu Y.
    Liu B.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (07): : 1551 - 1580
  • [33] DFHelper: Help clients to participate in federated learning tasks
    Wu, Zhenhao
    Gao, Jianbo
    Zhang, Jiashuo
    Li, Yue
    Li, Qingshan
    Guan, Zhi
    Chen, Zhong
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12749 - 12773
  • [34] Benchmarking AutoML frameworks for disease prediction using medical claims
    Romero, Roland Albert A.
    Deypalan, Mariefel Nicole Y.
    Mehrotra, Suchit
    Jungao, John Titus
    Sheils, Natalie E.
    Manduchi, Elisabetta
    Moore, Jason H.
    BIODATA MINING, 2022, 15 (01)
  • [35] Benchmarking AutoML frameworks for disease prediction using medical claims
    Roland Albert A. Romero
    Mariefel Nicole Y. Deypalan
    Suchit Mehrotra
    John Titus Jungao
    Natalie E. Sheils
    Elisabetta Manduchi
    Jason H. Moore
    BioData Mining, 15
  • [36] Open problems in medical federated learning
    Yoo, Joo Hun
    Jeong, Hyejun
    Lee, Jaehyeok
    Chung, Tai-Myoung
    INTERNATIONAL JOURNAL OF WEB INFORMATION SYSTEMS, 2022, 18 (2/3) : 77 - 99
  • [37] Survey of Medical Applications of Federated Learning
    Choi, Geunho
    Cha, Won Chul
    Lee, Se Uk
    Shin, Soo -Yong
    HEALTHCARE INFORMATICS RESEARCH, 2024, 30 (01) : 3 - 15
  • [38] Investigating the impact of data heterogeneity on the performance of federated learning algorithm using medical imaging
    Babar, Muhammad
    Qureshi, Basit
    Koubaa, Anis
    PLOS ONE, 2024, 19 (05):
  • [39] Federated Machine Learning in Medical imaging and against Adversarial Attacks: A retrospective multicohort study
    Teo, Zhen Ling
    Zhang, Xiaoman
    Tan, Ting Fang
    Ravichandran, Narrendar
    Yong, Liu
    Ting, Daniel S. W.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [40] Benchmarking PySyft Federated Learning Framework on MIMIC-III Dataset
    Budrionis, Andrius
    Miara, Magda
    Miara, Piotr
    Wilk, Szymon
    Bellika, Johan Gustav
    IEEE ACCESS, 2021, 9 (09): : 116869 - 116878