Benchmarking Federated Learning Frameworks for Medical Imaging Tasks

被引:1
|
作者
Fonio, Samuele [1 ]
机构
[1] Univ Turin, Turin, Italy
关键词
Federated Learning; Medical Image Classification; Scalability; Usability; FL Frameworks; Benchmark; Real Case Deployment; Cross Silo; PRIVACY;
D O I
10.1007/978-3-031-51026-7_20
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a comprehensive benchmarking study of various Federated Learning (FL) frameworks applied to the task of Medical Image Classification. The research specifically addresses the often neglected and complex aspects of scalability and usability in off-the-shelf FL frameworks. Through experimental validation using real case deployments, we provide empirical evidence of the performance and practical relevance of open source FL frameworks. Our findings contribute valuable insights for anyone interested in deploying a FL system, with a particular focus on the healthcare domain-an increasingly attractive field for FL applications.
引用
收藏
页码:223 / 232
页数:10
相关论文
共 50 条
  • [1] Medical Imaging Applications of Federated Learning
    Sandhu, Sukhveer Singh
    Gorji, Hamed Taheri
    Tavakolian, Pantea
    Tavakolian, Kouhyar
    Akhbardeh, Alireza
    Bini, Fabiano
    DIAGNOSTICS, 2023, 13 (19)
  • [2] Federated learning for medical imaging radiology
    Rehman, Muhammad Habib Ur
    Pinaya, Walter Hugo Lopez
    Nachev, Parashkev
    Teo, James T.
    Ourselin, Sebastin
    Cardoso, M. Jorge
    BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1150):
  • [3] The Role of Federated Learning Models in Medical Imaging
    Kwak, Lily
    Bai, Harrison
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2023, 5 (03)
  • [4] Federated Learning Showdown: The Comparative Analysis of Federated Learning Frameworks
    Karimireddy, Sai Praneeth
    Veeraragavan, Narasimha Raghavan
    Elvatun, Severin
    Nygard, Jan F.
    2023 EIGHTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING, FMEC, 2023, : 224 - 231
  • [5] Suppressing Poisoning Attacks on Federated Learning for Medical Imaging
    Alkhunaizi, Naif
    Kamzolov, Dmitry
    Takac, Martin
    Nandakumar, Karthik
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 673 - 683
  • [6] Federated Learning for Data and Model Heterogeneity in Medical Imaging
    Madni, Hussain Ahmad
    Umer, Rao Muhammad
    Foresti, Gian Luca
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 167 - 178
  • [7] Exploring Adversarial Attacks in Federated Learning for Medical Imaging
    Darzi, Erfan
    Dubost, Florian
    Sijtsema, Nanna. M.
    van Ooijen, P. M. A.
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (12) : 13591 - 13599
  • [8] Federated benchmarking of medical artificial intelligence with MedPerf
    Alexandros Karargyris
    Renato Umeton
    Micah J. Sheller
    Alejandro Aristizabal
    Johnu George
    Anna Wuest
    Sarthak Pati
    Hasan Kassem
    Maximilian Zenk
    Ujjwal Baid
    Prakash Narayana Moorthy
    Alexander Chowdhury
    Junyi Guo
    Sahil Nalawade
    Jacob Rosenthal
    David Kanter
    Maria Xenochristou
    Daniel J. Beutel
    Verena Chung
    Timothy Bergquist
    James Eddy
    Abubakar Abid
    Lewis Tunstall
    Omar Sanseviero
    Dimitrios Dimitriadis
    Yiming Qian
    Xinxing Xu
    Yong Liu
    Rick Siow Mong Goh
    Srini Bala
    Victor Bittorf
    Sreekar Reddy Puchala
    Biagio Ricciuti
    Soujanya Samineni
    Eshna Sengupta
    Akshay Chaudhari
    Cody Coleman
    Bala Desinghu
    Gregory Diamos
    Debo Dutta
    Diane Feddema
    Grigori Fursin
    Xinyuan Huang
    Satyananda Kashyap
    Nicholas Lane
    Indranil Mallick
    Pietro Mascagni
    Virendra Mehta
    Cassiano Ferro Moraes
    Vivek Natarajan
    Nature Machine Intelligence, 2023, 5 : 799 - 810
  • [9] Federated benchmarking of medical artificial intelligence with MedPerf
    Karargyris, Alexandros
    Umeton, Renato
    Sheller, Micah J.
    Aristizabal, Alejandro
    George, Johnu
    Wuest, Anna
    Pati, Sarthak
    Kassem, Hasan
    Zenk, Maximilian
    Baid, Ujjwal
    Moorthy, Prakash Narayana
    Chowdhury, Alexander
    Guo, Junyi
    Nalawade, Sahil
    Rosenthal, Jacob
    Kanter, David
    Xenochristou, Maria
    Beutel, Daniel J.
    Chung, Verena
    Bergquist, Timothy
    Eddy, James
    Abid, Abubakar
    Tunstall, Lewis
    Sanseviero, Omar
    Dimitriadis, Dimitrios
    Qian, Yiming
    Xu, Xinxing
    Liu, Yong
    Goh, Rick Siow Mong
    Bala, Srini
    Bittorf, Victor
    Puchala, Sreekar Reddy
    Ricciuti, Biagio
    Samineni, Soujanya
    Sengupta, Eshna
    Chaudhari, Akshay
    Coleman, Cody
    Desinghu, Bala
    Diamos, Gregory
    Dutta, Debo
    Feddema, Diane
    Fursin, Grigori
    Huang, Xinyuan
    Kashyap, Satyananda
    Lane, Nicholas
    Mallick, Indranil
    Mascagni, Pietro
    Mehta, Virendra
    Moraes, Cassiano Ferro
    Natarajan, Vivek
    NATURE MACHINE INTELLIGENCE, 2023, 5 (7) : 799 - 810
  • [10] Federated Learning in the Cloud for Analysis of Medical Images - Experience with Open Source Frameworks
    Jablecki, Przemyslaw
    Slazyk, Filip
    Malawski, Maciej
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 111 - 119