Principal curves to fractional m-Laplacian systems and related maximum and comparison principles

被引:0
|
作者
de Araujo, Anderson L. A. [1 ]
Leite, Edir J. F. [2 ]
Medeiros, Aldo H. S. [1 ]
机构
[1] Univ Fed Vicosa, Dept Matemat, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
关键词
Fractional m-Laplacian system; Principal eigenvalue; Lower estimate of eigenvalue; Maximum principle; Comparison principle; POSITIVE SOLUTIONS; EIGENVALUES; EXISTENCE; BOUNDS;
D O I
10.1007/s13540-024-00293-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we develop a comprehensive study on principal eigenvalues and both the (weak and strong) maximum and comparison principles related to an important class of nonlinear systems involving fractional m-Laplacian operators. Explicit lower bounds for principal eigenvalues of this system in terms of the diameter of bounded domain Omega subset of R-N are also proved. As application, we measure explicitly how small has to be diam (Omega)so that weak and strong maximum principles associated to this problem hold in Omega.
引用
收藏
页码:1948 / 1971
页数:24
相关论文
共 28 条
  • [21] Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations
    Damascelli, L
    Sciunzi, B
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 25 (02) : 139 - 159
  • [22] Harnack inequalities, maximum and comparison principles, and regularity of positive solutions of m-laplace equations
    Lucio Damascelli
    Berardino Sciunzi
    Calculus of Variations and Partial Differential Equations, 2006, 25 : 139 - 159
  • [23] Comparison of Peak Ductility Demand of Inelastic SDOF Systems in Maximum Elastic Response and Major Principal Directions
    Goda, Katsuichiro
    EARTHQUAKE SPECTRA, 2012, 28 (01) : 385 - 399
  • [24] Variational maximum principle for elliptic systems involving the fractional Laplacian (Jun, 10.1007/s40863-024-00429-4, 2024)
    Alikakos, N. D.
    Nikolouzos, M.
    Yannacopoulos, A. N.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 1115 - 1115
  • [25] Multiplicity of Solutions for Perturbed Nonlinear Fractional p-Laplacian Boundary Value Systems Related With Two Control Parameters
    Zuo, Jiabin
    Guefaifia, Rafik
    Kamache, Fares
    Boulaaras, Salah
    FILOMAT, 2021, 35 (08) : 2827 - 2848
  • [26] Group-Wise Evaluation and Comparison of White Matter Fiber Strain and Maximum Principal Strain in Sports-Related Concussion
    Ji, Songbai
    Zhao, Wei
    Ford, James C.
    Beckwith, Jonathan G.
    Bolander, Richard P.
    Greenwald, Richard M.
    Flashman, Laura A.
    Paulsen, Keith D.
    McAllister, Thomas W.
    JOURNAL OF NEUROTRAUMA, 2015, 32 (07) : 441 - 454
  • [27] Maximum principles, ABP estimates and HKS inequalities related to GLE systemsMaximum principles, ABP estimates and HKS inequalities related...E. J. F. Leite, M. Montenegro
    Edir Júnior Ferreira Leite
    Marcos Montenegro
    Annali di Matematica Pura ed Applicata (1923 -), 2025, 204 (2): : 573 - 592
  • [28] THE K + C2H5BR-]BRK + C2H5 REACTION UP TO 0.9 EV OF COLLISION ENERGY - MAXIMUM IN THE EXCITATION-FUNCTION AND COMPARISON WITH RELATED SYSTEMS
    HERRERO, VJ
    RABANOS, VS
    URENA, AG
    JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (11): : 2339 - 2343