The Parameterized Complexity of Terminal Monitoring Set

被引:0
|
作者
Aravind, N. R. [1 ]
Saxena, Roopam [1 ]
机构
[1] IIT Hyderabad, Dept Comp Sci & Engn, Hyderabad, Telangana, India
关键词
monitoring set; hitting set; hub location; parameterized complexity; fixed parameter tractability; HUB LOCATION-PROBLEMS; APPROXIMATION; ALGORITHM;
D O I
10.1007/978-981-97-0566-5_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In Terminal Monitoring Set (TMS), the input is an undirected graph G = (V, E), together with a collection T of terminal pairs and the goal is to find a subset S of minimum size that hits a shortest path between every pair of terminals. We show that this problem is W[2]-hard with respect to solution size. On the positive side, we show that TMS is fixed parameter tractable with respect to solution size plus distance to cluster, solution size plus neighborhood diversity, and feedback edge number. For the weighted version of the problem, we obtain a FPT algorithm with respect to vertex cover number, and for a relaxed version of the problem, we show that it is W[1]-hard with respect to solution size plus feedback vertex number.
引用
收藏
页码:76 / 90
页数:15
相关论文
共 50 条
  • [1] The Parameterized Complexity of Terminal Monitoring Set
    Aravind, N.R. (aravind@cse.iith.ac.in), 1600, Springer Science and Business Media Deutschland GmbH (14549 LNCS):
  • [2] Parameterized complexity of safe set
    Belmonte R.
    Hanaka T.
    Katsikarelis I.
    Lampis M.
    Ono H.
    Otachi Y.
    Journal of Graph Algorithms and Applications, 2020, 24 (03) : 215 - 245
  • [3] Parameterized Complexity of Safe Set
    Belmonte, Rémy
    Hanaka, Tesshu
    Katsikarelis, Ioannis
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 11485 LNCS : 38 - 49
  • [4] Parameterized Complexity of Geodetic Set
    Kellerhals L.
    Koana T.
    Journal of Graph Algorithms and Applications, 2022, 26 (04) : 401 - 419
  • [5] Parameterized complexity of safe set
    Belmonte, Rémy
    Hanaka, Tesshu
    Katsikarelis, Ioannis
    Lampis, Michael
    Ono, Hirotaka
    Otachi, Yota
    arXiv, 2019,
  • [6] On the Parameterized Complexity of Approximating Dominating Set
    Karthik, C. S.
    Laekhanukit, Bundit
    Manurangsi, Pasin
    JOURNAL OF THE ACM, 2019, 66 (05)
  • [7] On the Parameterized Complexity of Approximating Dominating Set
    Karthik, C. S.
    Laekhanukit, Bundit
    Manurangsi, Pasin
    STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 1283 - 1296
  • [8] On the Parameterized Complexity of Compact Set Packing
    Gadekar, Ameet
    ALGORITHMICA, 2024, 86 (11) : 3579 - 3597
  • [9] Parameterized Complexity of Weighted Target Set Selection
    Suzuki, Takahiro
    Kimura, Kei
    Suzuki, Akira
    Tamura, Yuma
    Zhou, Xiao
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2024, 2024, 14637 : 320 - 331
  • [10] Parameterized Complexity of Minimum Membership Dominating Set
    Akanksha Agrawal
    Pratibha Choudhary
    N. S. Narayanaswamy
    K. K. Nisha
    Vijayaragunathan Ramamoorthi
    Algorithmica, 2023, 85 : 3430 - 3452