Sim2Real Grasp Pose Estimation for Adaptive Robotic Applications

被引:2
|
作者
Horvath, Daniel [1 ,2 ]
Bocsi, Kristof [1 ]
Erdos, Gabor [1 ,3 ]
Istenes, Zoltan [2 ]
机构
[1] Eotvos Lorand Res Network, Ctr Excellence Prod Informat & Control, Inst Comp Sci & Control, Budapest, Hungary
[2] Eotvos Lorand Univ, CoLocat Ctr Acad & Ind Cooperat, Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Mfg Sci & Engn, Budapest, Hungary
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
adaptive robotics; robot vision; sim2real knowledge transfer; smart manufacturing; cyber physical production systems;
D O I
10.1016/j.ifacol.2023.10.121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive robotics plays an essential role in achieving truly co-creative cyber physical systems. In robotic manipulation tasks, one of the biggest challenges is to estimate the pose of given workpieces. Even though the recent deep-learning-based models show promising results, they require an immense dataset for training. In this paper, two vision-based, multi-object grasp pose estimation models (MOGPE), the MOGPE Real-Time and the MOGPE High-Precision are proposed. Furthermore, a sim2real method based on domain randomization to diminish the reality gap and overcome the data shortage. Our methods yielded an 80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the MOGPE Real-Time and the MOGPE High-Precision model respectively. Our framework provides an industrial tool for fast data generation and model training and requires minimal domain-specific data. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:5233 / 5239
页数:7
相关论文
共 50 条
  • [21] A Brief Survey of Sim2Real Methods for Robot Learning
    Dimitropoulos, Konstantinos
    Hatzilygeroudis, Ioannis
    Chatzilygeroudis, Konstantinos
    ADVANCES IN SERVICE AND INDUSTRIAL ROBOTICS, RAAD 2022, 2022, 120 : 133 - 140
  • [22] Real2Sim or Sim2Real: Robotics Visual Insertion Using Deep Reinforcement Learning and Real2Sim Policy Adaptation
    Chen, Yiwen
    Li, Xue
    Guo, Sheng
    Ng, Xian Yao
    Ang, Marcelo H.
    INTELLIGENT AUTONOMOUS SYSTEMS 17, IAS-17, 2023, 577 : 617 - 629
  • [23] Neural Neural Textures Make Sim2Real Consistent
    Burgert, Ryan
    Shang, Jinghuan
    Li, Xiang
    Ryoo, Michael S.
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 2215 - 2225
  • [24] Generation of GelSight Tactile Images for Sim2Real Learning
    Gomes, Daniel Fernandes
    Paoletti, Paolo
    Luo, Shan
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (02) : 4177 - 4184
  • [25] In-Hand Object Classification and Pose Estimation With Sim-to-Real Tactile Transfer for Robotic Manipulation
    Yang, Sanghoon
    Kim, Won Dong
    Park, Hyunkyu
    Min, Seojung
    Han, Hyonyoung
    Kim, Jung
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (01) : 659 - 666
  • [26] Sim2real flower detection towards automated Calendula harvesting
    Vierbergen, Wout
    Willekens, Axel
    Dekeyser, Donald
    Cool, Simon
    Wyffels, Francis
    BIOSYSTEMS ENGINEERING, 2023, 234 : 125 - 139
  • [27] OBJECTFOLDER 2.0: A Multisensory Object Dataset for Sim2Real Transfer
    Gao, Ruohan
    Si, Zilin
    Chang, Yen-Yu
    Clarke, Samuel
    Bohg, Jeannette
    Li Fei-Fei
    Yuan, Wenzhen
    Wu, Jiajun
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10588 - 10598
  • [28] Learning to Augment Synthetic Images for Sim2Real Policy Transfer
    Pashevich, Alexander
    Strudel, Robin
    Kalevatykh, Igor
    Laptev, Ivan
    Schmid, Cordelia
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2651 - 2657
  • [29] Exploring Generative AI for Sim2Real in Driving Data Synthesis
    Zhao, Haonan
    Wang, Yiting
    Bashford-Rogers, Thomas
    Donzella, Valentina
    Debattista, Kurt
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 3071 - 3077
  • [30] Sim2Real Object-Centric Keypoint Detection and Description
    Zhong, Chengliang
    Yang, Chao
    Sun, Fuchun
    Qi, Jinshan
    Mu, Xiaodong
    Liu, Huaping
    Huang, Wenbing
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 5440 - 5449