Sim2Real Grasp Pose Estimation for Adaptive Robotic Applications

被引:2
|
作者
Horvath, Daniel [1 ,2 ]
Bocsi, Kristof [1 ]
Erdos, Gabor [1 ,3 ]
Istenes, Zoltan [2 ]
机构
[1] Eotvos Lorand Res Network, Ctr Excellence Prod Informat & Control, Inst Comp Sci & Control, Budapest, Hungary
[2] Eotvos Lorand Univ, CoLocat Ctr Acad & Ind Cooperat, Budapest, Hungary
[3] Budapest Univ Technol & Econ, Dept Mfg Sci & Engn, Budapest, Hungary
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
adaptive robotics; robot vision; sim2real knowledge transfer; smart manufacturing; cyber physical production systems;
D O I
10.1016/j.ifacol.2023.10.121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Adaptive robotics plays an essential role in achieving truly co-creative cyber physical systems. In robotic manipulation tasks, one of the biggest challenges is to estimate the pose of given workpieces. Even though the recent deep-learning-based models show promising results, they require an immense dataset for training. In this paper, two vision-based, multi-object grasp pose estimation models (MOGPE), the MOGPE Real-Time and the MOGPE High-Precision are proposed. Furthermore, a sim2real method based on domain randomization to diminish the reality gap and overcome the data shortage. Our methods yielded an 80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the MOGPE Real-Time and the MOGPE High-Precision model respectively. Our framework provides an industrial tool for fast data generation and model training and requires minimal domain-specific data. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:5233 / 5239
页数:7
相关论文
共 50 条
  • [1] Object Detection Using Sim2Real Domain Randomization for Robotic Applications
    Horvath, Daniel
    Erdos, Gabor
    Istenes, Zoltan
    Horvath, Tomas
    Foldi, Sandor
    IEEE TRANSACTIONS ON ROBOTICS, 2023, 39 (02) : 1225 - 1243
  • [2] Sim2Real in Robotics and Automation: Applications and Challenges
    Hofer, Sebastian
    Bekris, Kostas
    Handa, Ankur
    Gamboa, Juan Camilo
    Mozifian, Melissa
    Golemo, Florian
    Atkeson, Chris
    Fox, Dieter
    Goldberg, Ken
    Leonard, John
    Karen Liu, C.
    Peters, Jan
    Song, Shuran
    Welinder, Peter
    White, Martha
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2021, 18 (02) : 398 - 400
  • [3] Sim2real transfer learning for 3D human pose estimation: motion to the rescue
    Doersch, Carl
    Zisserman, Andrew
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [4] Sim2Real Instance-Level Style Transfer for 6D Pose Estimation
    Ikeda, Takuya
    Tanishige, Suomi
    Amma, Ayako
    Sudano, Michael
    Audren, Herv Prime E.
    Nishiwaki, Koichi
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3225 - 3232
  • [5] Sim2Real for Soft Robotic Fish via Differentiable Simulation
    Zhang, John Z.
    Zhang, Yu
    Ma, Pingchuan
    Nava, Elvis
    Du, Tao
    Arm, Philip
    Matusik, Wojciech
    Katzschmann, Robert K.
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 12598 - 12605
  • [6] CPPF plus plus : Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation
    You, Yang
    He, Wenhao
    Liu, Jin
    Xiong, Hongkai
    Wang, Weiming
    Lu, Cewu
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9239 - 9254
  • [7] Sim2real Learning of Obstacle Avoidance for Robotic Manipulators in Uncertain Environments
    Zhang, Tan
    Zhang, Kefang
    Lin, Jiatao
    Louie, Wing-Yue Geoffrey
    Huang, Hui
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (01): : 65 - 72
  • [8] Rethinking Sim2Real: Lower Fidelity Simulation Leads to Higher Sim2Real Transfer in Navigation
    Truong, Joanne
    Rudolph, Max
    Yokoyama, Naoki
    Chernova, Sonia
    Batra, Dhruv
    Rai, Akshara
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 859 - 870
  • [9] Learning Neural Force Manifolds for Sim2Real Robotic Symmetrical Paper Folding
    Choi, Andrew
    Tong, Dezhong
    Terzopoulos, Demetri
    Joo, Jungseock
    Jawed, Mohammad Khalid
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 1483 - 1496
  • [10] Learning Neural Force Manifolds for Sim2Real Robotic Symmetrical Paper Folding
    Choi, Andrew
    Tong, Dezhong
    Terzopoulos, Demetri
    Joo, Jungseock
    Jawed, Mohammad Khalid
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2025, 22 : 1483 - 1496