An Approach to Direct 3D Imaging with Coherent Light

被引:1
|
作者
Artyukov, I. A. [1 ]
Busarov, A. S. [1 ]
Popov, N. L. [1 ]
Vinogradov, A. V. [1 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
关键词
coherent 3D imaging; coherent diffraction imaging; lens-free 3D imaging; parabolic wave equation; Gaussian beam expansion; time-dependent Schr & ouml; dinger equation;
D O I
10.1007/s10946-024-10212-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the 3D coefficient inverse problem for parabolic wave equation. It involves determining the spatial distribution of refractive and absorption indices by processing phase diffraction patterns obtained by irradiating an object with a set of Gaussian beams. Unlike tomography and ptychography, rotation or scanning of the sample is not required. The problem is solved by expanding the wave field and the complex dielectric constant epsilon r ->\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \left(\overrightarrow{r}\right)$$\end{document} over the full set of Gaussian beam functions. To determine epsilon r ->,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon \left(\overrightarrow{r}\right),$$\end{document} we obtain a nonlinear matrix equation. The condition of its solvability allows the selection of sampling frequencies by coordinates in accordance with the practical task.
引用
收藏
页码:278 / 285
页数:8
相关论文
共 50 条
  • [21] Adaptive 3D convolutional neural network-based reconstruction method for 3D coherent diffraction imaging
    Scheinker, Alexander
    Pokharel, Reeju
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (18)
  • [22] Digital signal processing of light in holographic 3D imaging
    Matsushima, Kyoji
    APPLICATIONS OF DIGITAL IMAGE PROCESSING XXXVIII, 2015, 9599
  • [23] Light transport in turbid water for 3D underwater imaging
    Thorstensen, Jostein
    Zonetti, Simone
    Thielemann, Jens
    OPTICS EXPRESS, 2024, 32 (25): : 45013 - 45028
  • [24] 3D imaging using lens array and incoherent light
    Lee, Byoungho
    Jang, Changwon
    Kim, Jonghyun
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2015, : 668 - 672
  • [25] Asymmetric Encryption of Invisible Structured Light 3D Imaging
    Zhang, Jing
    Yan, Aimin
    Zhang, Hongbo
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [26] 3D computational imaging in scattering with light field datasets
    Waller, Laura
    HIGH-SPEED BIOMEDICAL IMAGING AND SPECTROSCOPY: TOWARD BIG DATA INSTRUMENTATION AND MANAGEMENT, 2016, 9720
  • [27] 3D IMAGING FOR THERMAL CAMERAS USING STRUCTURED LIGHT
    Erdozain, Jack Jr Jr
    Ichimaru, Kazuto
    Maeda, Tomohiro
    Kawasaki, Hiroshi
    Raskar, Ramesh
    Kadambi, Achuta
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2795 - 2799
  • [28] Structured-light 3D surface imaging: a tutorial
    Geng, Jason
    ADVANCES IN OPTICS AND PHOTONICS, 2011, 3 (02): : 128 - 160
  • [29] 3D Light Sheet Luminescence Imaging with Cherenkov Radiation
    Bruza, P.
    Lin, H.
    Jarvis, L.
    Gladstone, D.
    Pogue, B.
    MEDICAL PHYSICS, 2016, 43 (06) : 3864 - 3864
  • [30] 3D Imaging Using Geometric Light Field: A Review
    Yin Yongkai
    Yu Kai
    Yu Chunzhan
    Bai Xuechun
    Cai Zewei
    Meng Xiangfeng
    Yang Xiulun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (12):