Galois points and Cremona transformations

被引:0
|
作者
Abouelsaad, Ahmed [1 ,2 ]
机构
[1] Univ Basel, Dept Math & Comp Sci, CH-4051 Basel, Switzerland
[2] Mansoura Univ, Fac Sci, Math Dept, Mansoura 35516, Egypt
关键词
Galois points; Cremona transformations; Galois groups; Jonquieres maps; CURVES;
D O I
10.1017/S0017089524000090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study Galois points of plane curves and the extension of the corresponding Galois group to $\mathrm{Bir}(\mathbb{P}<^>2)$ . We prove that if the Galois group has order at most $3$ , it always extends to a subgroup of the Jonquieres group associated with the point $P$ . Conversely, with a degree of at least $4$ , we prove that it is false. We provide an example of a Galois extension whose Galois group is extendable to Cremona transformations but not to a group of de Jonquieres maps with respect to $P$ . In addition, we also give an example of a Galois extension whose Galois group cannot be extended to Cremona transformations.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [21] On degenerations of plane Cremona transformations
    Jérémy Blanc
    Alberto Calabri
    Mathematische Zeitschrift, 2016, 282 : 223 - 245
  • [22] Cremona transformations and diffeomorphisms of surfaces
    Kollar, Janos
    Mangolte, Frederic
    ADVANCES IN MATHEMATICS, 2009, 222 (01) : 44 - 61
  • [23] On degenerations of plane Cremona transformations
    Blanc, Jeremy
    Calabri, Alberto
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (1-2) : 223 - 245
  • [24] WEYL GROUPS AND CREMONA TRANSFORMATIONS
    DOLGACHEV, IV
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1983, 40 : 283 - 294
  • [25] Bijective Cremona transformations of the plane
    Asgarli, Shamil
    Lai, Kuan-Wen
    Nakahara, Masahiro
    Zimmermann, Susanna
    SELECTA MATHEMATICA-NEW SERIES, 2022, 28 (03):
  • [26] Bijective Cremona transformations of the plane
    Shamil Asgarli
    Kuan-Wen Lai
    Masahiro Nakahara
    Susanna Zimmermann
    Selecta Mathematica, 2022, 28
  • [27] SOME SPECIAL CREMONA TRANSFORMATIONS
    EIN, L
    SHEPHERDBARRON, N
    AMERICAN JOURNAL OF MATHEMATICS, 1989, 111 (05) : 783 - 800
  • [28] Concerning a covariant of Cremona transformations
    Keller, OH
    MATHEMATISCHE ANNALEN, 1937, 114 : 700 - 741
  • [29] On characteristic classes of determinantal Cremona transformations
    Gonzalez-Sprinberg, G
    Pan, I
    MATHEMATISCHE ANNALEN, 2006, 335 (02) : 479 - 487
  • [30] Cremona transformations associated to quadratic complexes
    Avritzer D.
    Lange H.
    Rendiconti del Circolo Matematico di Palermo, 2013, 62 (1) : 27 - 36