Predictive value of a stemness-based classifier for prognosis and immunotherapy response of hepatocellular carcinoma based on bioinformatics and machine-learning strategies

被引:1
|
作者
Chen, Erbao [1 ]
Zou, Zhilin [2 ]
Wang, Rongyue [1 ]
Liu, Jie [1 ]
Peng, Zhen [1 ]
Gan, Zhe [1 ]
Lin, Zewei [1 ]
Liu, Jikui [1 ]
机构
[1] Peking Univ, Dept Hepatobiliary & Pancreat Surg, Shenzhen Hosp, Shenzhen, Guangdong, Peoples R China
[2] Wenzhou Med Univ, Affiliated Eye Hosp, Dept Ophthalmol, Wenzhou, Zhejiang, Peoples R China
来源
FRONTIERS IN IMMUNOLOGY | 2024年 / 15卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
hepatocellular carcinoma; prognostic signature; stemness; tumor microenvironment; immunotherapy response; CELLS; MICROENVIRONMENT; NEUTROPHILS; PROGRESSION; EXPRESSION;
D O I
10.3389/fimmu.2024.1244392
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Objective Significant advancements have been made in hepatocellular carcinoma (HCC) therapeutics, such as immunotherapy for treating patients with HCC. However, there is a lack of reliable biomarkers for predicting the response of patients to therapy, which continues to be challenging. Cancer stem cells (CSCs) are involved in the oncogenesis, drug resistance, and invasion, as well as metastasis of HCC cells. Therefore, in this study, we aimed to create an mRNA expression-based stemness index (mRNAsi) model to predict the response of patients with HCC to immunotherapy.Methods We retrieved gene expression and clinical data of patients with HCC from the GSE14520 dataset and the Cancer Genome Atlas (TCGA) database. Next, we used the "one-class logistic regression (OCLR)" algorithm to obtain the mRNAsi of patients with HCC. We performed "unsupervised consensus clustering" to classify patients with HCC based on the mRNAsi scores and stemness subtypes. The relationships between the mRNAsi model, clinicopathological features, and genetic profiles of patients were compared using various bioinformatic methods. We screened for differentially expressed genes to establish a stemness-based classifier for predicting the patient's prognosis. Next, we determined the effect of risk scores on the tumor immune microenvironment (TIME) and the response of patients to immune checkpoint blockade (ICB). Finally, we used qRT-PCR to investigate gene expression in patients with HCC.Results We screened CSC-related genes using various bioinformatics tools in patients from the TCGA-LIHC cohort. We constructed a stemness classifier based on a nine-gene (PPARGC1A, FTCD, CFHR3, MAGEA6, CXCL8, CABYR, EPO, HMMR, and UCK2) signature for predicting the patient's prognosis and response to ICBs. Further, the model was validated in an independent GSE14520 dataset and performed well. Our model could predict the status of TIME, immunogenomic expressions, congenic pathway, and response to chemotherapy drugs. Furthermore, a significant increase in the proportion of infiltrating macrophages, Treg cells, and immune checkpoints was observed in patients in the high-risk group. In addition, tumor cells in patients with high mRNAsi scores could escape immune surveillance. Finally, we observed that the constructed model had a good expression in the clinical samples. The HCC tumor size and UCK2 genes expression were significantly alleviated and decreased, respectively, by treatments of anti-PD1 antibody. We also found knockdown UCK2 changed expressions of immune genes in HCC cell lines.Conclusion The novel stemness-related model could predict the prognosis of patients and aid in creating personalized immuno- and targeted therapy for patients in HCC.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Prediction of prognosis in hepatocellular carcinoma using machine learning based on genomic expression data
    Wang, Fengyan
    Xue, Changqing
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2023, 38 : 49 - 50
  • [22] Predictive value of m6A regulators in prognosis and immunotherapy response of clear cell renal cell carcinoma: a bioinformatics and radiomics analysis
    Chen, Wanqi
    Lin, Tuanyu
    Wang, Zhenshan
    Zeng, Liting
    Lin, Haitao
    Yang, Guisheng
    Huang, Weipeng
    JOURNAL OF CANCER METASTASIS AND TREATMENT, 2024, 10
  • [23] Machine learning-based construction of a ferroptosis and necroptosis associated lncRNA signature for predicting prognosis and immunotherapy response in hepatocellular cancer
    Zhao, Lei
    You, Zhixuan
    Bai, Zhixun
    Xie, Jian
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [24] Unveiling efferocytosis-related signatures through the integration of single-cell analysis and machine learning: a predictive framework for prognosis and immunotherapy response in hepatocellular carcinoma
    Liu, Tao
    Li, Chao
    Zhang, Jiantao
    Hu, Han
    Li, Chenyao
    FRONTIERS IN IMMUNOLOGY, 2023, 14
  • [25] Machine-learning classifier models for predicting sarcopenia in the elderly based on physical factors
    Kim, Jun-hee
    GERIATRICS & GERONTOLOGY INTERNATIONAL, 2024, 24 (06) : 595 - 602
  • [26] PIC-Me: paralogs and isoforms classifier based on machine-learning approaches
    Jooseong Oh
    Sung-Gwon Lee
    Chungoo Park
    BMC Bioinformatics, 22
  • [27] Detection of key mRNAs in liver tissue of hepatocellular carcinoma patients based on machine learning and bioinformatics analysis
    Gholizadeh, Maryam
    Mazlooman, Seyed Reza
    Hadizadeh, Morteza
    Drozdzik, Marek
    Eslami, Saeid
    METHODSX, 2023, 10
  • [28] PIC-Me: paralogs and isoforms classifier based on machine-learning approaches
    Oh, Jooseong
    Lee, Sung-Gwon
    Park, Chungoo
    BMC BIOINFORMATICS, 2021, 22 (SUPPL 11)
  • [29] Machine-Learning Based Prediction Model for Prognosis of IgA Nephropathy Patients
    Park, Sehoon
    Koh, Eun Sil
    Baek, Chung Hee
    Kim, Yong Chul
    Lee, Jung Pyo
    Kim, Dong Ki
    Han, Seung Hyeok
    Chin, Ho Jun
    Joo, Kwon Wook
    Kim, Yon Su
    Lee, Hajeong
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 800 - 801
  • [30] Prediction of prognosis in patients with systemic sclerosis based on a machine-learning model
    Zheng, Yan
    Jin, Wei
    Zheng, Zhaohui
    Zhang, Kui
    Jia, Junfeng
    Lei, Cong
    Wang, Weitao
    Zhu, Ping
    CLINICAL RHEUMATOLOGY, 2024, 43 (08) : 2573 - 2584