INVISCID WATER-WAVES AND INTERFACE MODELING

被引:1
|
作者
Dormy, Emmanuel [1 ]
Lacave, Christophe [2 ,3 ]
机构
[1] PSL Univ, Ecole Super, Dept Math & Applicat, CNRS,UMR 8553, F-75005 Paris, France
[2] Univ Grenoble Alpes, CNRS, IF, F-38000 Grenoble, France
[3] Univ Savoie Mont Blanc, CNRS, LAMA, F-73000 Chambery, France
关键词
Singular integral formulations; vortex and dipole formulation; overturning waves; splash singularity; WELL-POSEDNESS; VORTEX METHOD; SINGULARITIES; CONVERGENCE; EQUATION;
D O I
10.1090/qam/1685
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a rigorous mathematical analysis of the modeling of inviscid water waves. The free-surface is described as a parametrized curve. We introduce a numerically stable algorithm which accounts for its evolution with time. The method is shown to converge using approximate solutions, such as Stokes waves and Green-Naghdi solitary waves. It is finally tested on a wave breaking problem, for which an odd-even coupling suffices to achieve numerical convergence up to the splash without the need for additional filtering.
引用
收藏
页码:583 / 637
页数:55
相关论文
共 50 条