Functional Formulation of Quantum Theory of a Scalar Field in a Metric with Lorentzian and Euclidean Signatures

被引:0
|
作者
Haba, Zbigniew [1 ]
机构
[1] Univ Wroclaw, Inst Theoret Phys, Plac Maxa Borna 9, PL-50204 Wroclaw, Poland
关键词
functional integration; quantum field theory; stochastic processes; expanding universe; quantum gravity; field correlation functions; SITTER SPACE; WAVE-FUNCTION; TIME; PROPAGATOR; MECHANICS; UNIVERSE; TOPOLOGY; EQUATION; STATES;
D O I
10.3390/e26040329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Schr & ouml;dinger equation in quantum field theory (QFT) in its functional formulation. In this approach, quantum correlation functions can be expressed as classical expectation values over (complex) stochastic processes. We obtain a stochastic representation of the Schr & ouml;dinger time evolution on Wentzel-Kramers-Brillouin (WKB) states by means of the Wiener integral. We discuss QFT in a flat expanding metric and in de Sitter space-time. We calculate the evolution kernel in an expanding flat metric in the real-time formulation. We discuss a field interaction in pseudoRiemannian and Riemannian metrics showing that an inversion of the signature leads to some substantial simplifications of the singularity problems in QFT.
引用
下载
收藏
页数:49
相关论文
共 50 条
  • [21] Braided Scalar Quantum Field Theory
    Bogdanovic, Djordje
    Ciric, Marija Dimitrijevic
    Radovanovic, Voja
    Szabo, Richard J.
    Trojani, Guillaume
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2024,
  • [22] QUANTUM FIELD THEORY IN TERMS OF EUCLIDEAN PARAMETERS
    NAKANO, T
    PROGRESS OF THEORETICAL PHYSICS, 1959, 21 (02): : 241 - 259
  • [23] Gas of wormholes in Euclidean quantum field theory
    Savelova, E. P.
    GRAVITATION & COSMOLOGY, 2015, 21 (01): : 48 - 56
  • [24] Gas of wormholes in Euclidean quantum field theory
    E. P. Savelova
    Gravitation and Cosmology, 2015, 21 : 48 - 56
  • [25] METRIC IN NON-LINEAR THEORY OF SCALAR FIELD
    GLINSKII, GF
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1978, (06): : 52 - 55
  • [26] SUPERSYMMETRY IN EUCLIDEAN QUANTUM-FIELD THEORY
    HABA, Z
    KUPSCH, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1995, 43 (01): : 41 - 66
  • [27] ON QUANTUM FIELD THEORY WITH INDEFINITE METRIC
    TANAKA, S
    PROGRESS OF THEORETICAL PHYSICS, 1962, 27 (01): : 221 - 222
  • [28] QUANTUM FIELD THEORY WITH INDEFINITE METRIC
    MUNAKATA, Y
    PROGRESS OF THEORETICAL PHYSICS, 1962, 27 (02): : 361 - 372
  • [29] Quantum Field Theory on Curved Backgrounds. I. The Euclidean Functional Integral
    Arthur Jaffe
    Gordon Ritter
    Communications in Mathematical Physics, 2007, 270 : 545 - 572
  • [30] Quantum field theory on curved backgrounds. I. The Euclidean functional integral
    Jaffe, Arthur
    Ritter, Gordon
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) : 545 - 572