GLOBAL WEAK SOLUTIONS IN A SELF-CONSISTENT CHEMOTAXIS-FLUID SYSTEM WITH PRESCRIBED SIGNAL CONCENTRATION ON THE BOUNDARY

被引:0
|
作者
Yang, Lu [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
关键词
nonlinear diffusion; self-consistent; saturation of the signal on the boundary; Keller-Segel; -fluid; NAVIER-STOKES SYSTEM; KELLER-SEGEL SYSTEM; NONLINEAR DIFFUSION; EXISTENCE; BOUNDEDNESS; MODEL; SOLVABILITY; REGULARITY;
D O I
10.3934/cpaa.2024031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate an incompressible chemotaxis-Stokessystem with nonlinear diffusion and rotational flux {n(t)+u<middle dot>del n= triangle n(m)-del<middle dot>(nS(x,n,c)<middle dot>del c) +del<middle dot>(n del phi), x is an element of ohm, t >0, c(t)+u<middle dot>del c= triangle c-nc, x is an element of ohm, t > 0, u(t )+ del P = triangle u-n del phi+nS(x,n,c)<middle dot>del c,del<middle dot>u= 0, x is an element of ohm, t > 0 in a bounded domain ohm subset of R-3 with smooth boundary partial derivative ohm. The corresponding boundary conditions satisfy (del n(m)-nS(x,n,c)<middle dot>del c+n del phi)<middle dot>nu= 0, c=c & lowast;(x,t),u=0, x is an element of partial derivative ohm, t >0,with m > 1 and a given nonnegative function c & lowast;(x,t)is an element of C2,1(ohm x(0,infinity)). The chemotatic sensitivity S is a given tensor-valued function fulfilling |S(x,n,c)|76. In the homogeneous Dirichlet signal boundary condition (i.e., c & lowast;(x,t) equivalent to 0) case, we further prove that the solutions will stabilize to the mass-preserving spatial equilibrium (n0,0,0), wheren0:=1|ohm|R ohm n0(x)dx.
引用
收藏
页码:674 / 717
页数:44
相关论文
共 50 条
  • [21] GLOBAL BOUNDEDNESS OF SOLUTIONS TO A CHEMOTAXIS-FLUID SYSTEM WITH SINGULAR SENSITIVITY AND LOGISTIC SOURCE
    Ren, Guoqiang
    Liu, Bin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (07) : 3843 - 3883
  • [22] GLOBAL SOLUTIONS FOR CHEMOTAXIS-FLUID SYSTEMS WITH SINGULAR CHEMOTACTIC SENSITIVITY
    Kim, Dongkwang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (10): : 5380 - 5395
  • [23] Global classical solutions for chemotaxis-fluid systems in two dimensions
    Ahn, Jaewook
    Kang, Kyungkeun
    Yoon, Changwook
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (02) : 2254 - 2264
  • [24] Global existence and asymptotic behavior of solutions to a chemotaxis-fluid system on general bounded domains
    Jiang, Jie
    Wu, Hao
    Zheng, Songmu
    ASYMPTOTIC ANALYSIS, 2015, 92 (3-4) : 249 - 258
  • [25] Global solvability and eventual smoothness in a chemotaxis-fluid system with weak logistic-type degradation
    Wang, Yulan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (06): : 1217 - 1252
  • [26] Global Strong Solutions to a Coupled Chemotaxis-Fluid Model with Subcritical Sensitivity
    Fan, Jishan
    Li, Fucai
    ACTA APPLICANDAE MATHEMATICAE, 2020, 169 (01) : 767 - 791
  • [27] Existence and decay of global smooth solutions to the coupled chemotaxis-fluid model
    Ye, Xia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (01) : 60 - 73
  • [28] Global Strong Solutions to a Coupled Chemotaxis-Fluid Model with Subcritical Sensitivity
    Jishan Fan
    Fucai Li
    Acta Applicandae Mathematicae, 2020, 169 : 767 - 791
  • [29] Global existence of classical solutions for the 2D chemotaxis-fluid system with logistic source
    Lin, Yina
    Zhang, Qian
    Zhou, Meng
    AIMS MATHEMATICS, 2022, 7 (04): : 7212 - 7233
  • [30] GLOBAL SOLUTIONS FOR A 2D CHEMOTAXIS-FLUID SYSTEM WITH LARGE MEASURES AS INITIAL DENSITY AND VORTICITY
    Ferreira, Lucas C. F.
    Lima, Daniel P. A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025, 30 (03): : 843 - 873