Multi-Object Navigation with dynamically learned neural implicit representations

被引:0
|
作者
Marza, Pierre [1 ]
Matignon, Laetitia [2 ]
Simonin, Olivier [1 ]
Wolf, Christian [3 ]
机构
[1] INSA Lyon, Lyon, France
[2] UCBL, Villeurbanne, France
[3] Naver Labs Europe, Meylan, France
关键词
D O I
10.1109/ICCV51070.2023.01010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Understanding and mapping a new environment are core abilities of any autonomously navigating agent. While classical robotics usually estimates maps in a stand-alone manner with SLAM variants, which maintain a topological or metric representation, end-to-end learning of navigation keeps some form of memory in a neural network. Networks are typically imbued with inductive biases, which can range from vectorial representations to birds-eye metric tensors or topological structures. In this work, we propose to structure neural networks with two neural implicit representations, which are learned dynamically during each episode and map the content of the scene: (i) the Semantic Finder predicts the position of a previously seen queried object; (ii) the Occupancy and Exploration Implicit Representation encapsulates information about explored area and obstacles, and is queried with a novel global read mechanism which directly maps from function space to a usable embedding space. Both representations are leveraged by an agent trained with Reinforcement Learning ( RL) and learned online during each episode. We evaluate the agent on Multi-Object Navigation and show the high impact of using neural implicit representations as a memory source.
引用
收藏
页码:10970 / 10981
页数:12
相关论文
共 50 条
  • [41] FALCON:: multi-object AO
    Gendron, E
    Assémat, F
    Hammer, F
    Jagourel, P
    Chemla, F
    Laporte, P
    Puech, M
    Marteaud, M
    Zamkotsian, F
    Liotard, A
    Conan, JM
    Fusco, T
    Hubin, N
    COMPTES RENDUS PHYSIQUE, 2005, 6 (10) : 1110 - 1117
  • [42] Multi-object Grasping in the Plane
    Agboh, Wisdom C.
    Ichnowski, Jeffrey
    Goldberg, Ken
    Dogar, Mehmet R.
    ROBOTICS RESEARCH, ISRR 2022, 2023, 27 : 222 - 238
  • [43] Multi-object spectroscopy in space
    Burgarella, D
    Buat, V
    Dohlen, K
    Zamkotsian, F
    Mottier, P
    34TH LIEGE INTERNATIONAL ASTROPHYSICS COLLOQUIUM - THE NEXT GENERATION SPACE TELESCOPE SCIENCE DRIVERS AND TECHNOLOGICAL CHALLENGES, 1998, 429 : 147 - 152
  • [44] Optimal multi-object auctions
    Armstrong, M
    REVIEW OF ECONOMIC STUDIES, 2000, 67 (03): : 455 - 481
  • [45] Multi-object spectrograph TAUMOK
    Ball, M
    Ziener, R
    WIDE-FIELD SPECTROSCOPY, 1997, 212 : 117 - 118
  • [46] Multi-object spectroscopy in space
    Burgarella, D
    Dohlen, K
    Buat, V
    Lemaitre, G
    Perez, A
    SPACE TELESCOPES AND INSTRUMENTS V, PTS 1-2, 1998, 3356 : 176 - 184
  • [47] On the calibration of multi-object spectrographs
    Nonino, M.
    Bono, G.
    Monelli, M.
    Thevenin, F.
    Francois, P.
    Buonanno, R.
    Corsi, C. E.
    Lannicola, G.
    Ferraro, I.
    Pulone, L.
    Moehler, S.
    Smith, H. A.
    Stetson, P. B.
    Walker, A. R.
    FUTURE OF PHOTOMETRIC, SPECTROPHOTOMETRIC AND POLARIMETRIC STANDARDIZATION, 2007, 364 : 295 - +
  • [48] Multi-object trajectory tracking
    Mei Han
    Wei Xu
    Hai Tao
    Yihong Gong
    Machine Vision and Applications, 2007, 18 : 221 - 232
  • [49] Multi-object spectroscopy:: The faint object case
    Le Fèvre, O
    SCIENTIFIC DRIVERS FOR ESO FUTURE VLT/VLTI INSTRUMENTATION, PROCEEDINGS, 2002, : 81 - 86
  • [50] The multi-object adaptive optics system for the Gemini Infra-Red Multi-Object Spectrograph
    Chapman, Scott C.
    Conod, Uriel
    Turri, Paolo
    Jackson, Kathryn
    Lardiere, Olivier
    Sivanandam, Suresh
    Andersen, David
    Correia, Carlos M.
    Lamb, Masen P.
    Ross, Colin
    Sivo, Gaetano
    Veran, Jean-Pierre
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448