Weighted Composition Semigroups on Spaces of Continuous Functions and Their Subspaces

被引:0
|
作者
Kruse, Karsten [1 ,2 ]
机构
[1] Univ Twente, Dept Appl Math, POB 217, NL-7500 AE Enschede, Netherlands
[2] Hamburg Univ Technol, Inst Math, Schwarzenberg Campus 3, D-21073 Hamburg, Germany
关键词
Weighted composition semigroup; Semiflow; Semicocycle; Saks space; Mixed topology; COMPOSITION OPERATORS; SEMI-GROUPS; COCYCLES; HARDY; FLOWS; MAPS;
D O I
10.1007/s11785-024-01559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to weighted composition semigroups on spaces of continuous functions and their subspaces. We consider semigroups induced by semiflows and semicocycles on Banach spaces F ( Omega ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}(\Omega )$$\end{document} of continuous functions on a Hausdorff space Omega \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} such that the norm-topology is stronger than the compact-open topology like the Hardy spaces, the weighted Bergman spaces, the Dirichlet space, the Bloch type spaces, the space of bounded Dirichlet series and weighted spaces of continuous or holomorphic functions. It was shown by Gallardo-Guti & eacute;rrez, Siskakis and Yakubovich that there are no non-trivial norm-strongly continuous weighted composition semigroups on Banach spaces F ( D ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}(\mathbb {D})$$\end{document} of holomorphic functions on the open unit disc D \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} such that H infinity subset of F ( D ) subset of B 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{\infty }\subset \mathcal {F}(\mathbb {D})\subset \mathcal {B}_{1}$$\end{document} where H infinity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>{\infty }$$\end{document} is the Hardy space of bounded holomorphic functions on D \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document} and B 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}_{1}$$\end{document} the Bloch space. However, we show that there are non-trivial weighted composition semigroups on such spaces which are strongly continuous w.r.t. the mixed topology between the norm-topology and the compact-open topology. We study such weighted composition semigroups in the general setting of Banach spaces of continuous functions and derive necessary and sufficient conditions on the spaces involved, the semiflows and semicocycles for strong continuity w.r.t. the mixed topology and as a byproduct for norm-strong continuity as well. Moreover, we give several characterisations of their generator and their space of norm-strong continuity.
引用
收藏
页数:47
相关论文
共 50 条
  • [31] Strongly continuous composition semigroups on analytic Morrey spaces
    Sun, Fangmei
    Wulan, Hasi
    NEW YORK JOURNAL OF MATHEMATICS, 2022, 28 : 1419 - 1430
  • [32] Volterra operators and semigroups in weighted Banach spaces of analytic functions
    Basallote, Manuela
    Contreras, Manuel D.
    Hernandez-Mancera, Carmen
    Martin, Maria J.
    Paul, Pedro J.
    COLLECTANEA MATHEMATICA, 2014, 65 (02) : 233 - 249
  • [33] Volterra operators and semigroups in weighted Banach spaces of analytic functions
    Manuela Basallote
    Manuel D. Contreras
    Carmen Hernández-Mancera
    María J. Martín
    Pedro J. Paúl
    Collectanea Mathematica, 2014, 65 : 233 - 249
  • [34] Semigroups of Weighted Composition Operators on Hardy Spaces of Dirichlet Series
    Huang, Chengshi
    Wang, Maofa
    Yao, Xingxing
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2025, 19 (02)
  • [35] Composition Semigroups on Weighted Bergman Spaces Induced by Doubling Weights
    Wu, Fanglei
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [36] EXTENDING CONTINUOUS FUNCTIONS ON SUBSPACES OF PRODUCT SPACES - PRELIMINARY REPORT
    COMFORT, WW
    NEGREPON.S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (04): : 669 - &
  • [37] WEIGHTED (LF)-SPACES OF CONTINUOUS-FUNCTIONS
    BIERSTEDT, KD
    BONET, J
    MATHEMATISCHE NACHRICHTEN, 1994, 165 : 25 - 48
  • [38] EMBEDDINGS OF WEIGHTED SOBOLEV SPACES INTO SPACES OF CONTINUOUS-FUNCTIONS
    BROWN, RC
    OPIC, B
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1992, 439 (1906): : 279 - 296
  • [39] Weighted composition operators in weighted Banach spaces of analytic functions
    Contreras, MD
    Hernandez-Diaz, AG
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 2000, 69 : 41 - 60
  • [40] Weighted composition operators on weighted Banach spaces of analytic functions
    Montes-Rodríguez, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 61 : 872 - 884