Edge states in non-Hermitian composite acoustic Su Schrieffer Heeger chains

被引:1
|
作者
Guo, Tong [1 ]
Assouar, Badreddine [1 ]
Vincent, Brice [1 ]
Merkel, Aurelien [1 ]
机构
[1] Univ Lorraine, CNRS, IJL, F-54000 Nancy, France
关键词
Topology;
D O I
10.1063/5.0186638
中图分类号
O59 [应用物理学];
学科分类号
摘要
Non-Hermiticity alone can trigger topological phase transition in physical systems. Here, we construct different unit cells in an acoustic Su Schrieffer Heeger chain with different distributions of onsite losses. We theoretically and numerically investigate the different edge modes that can occur at the domain walls of different finite chains. Three types of edge modes are identified. The first type comes from the topology of the unit cells. The second type comes from the local Parity symmetry at the interface, which are cavity modes. The third one comes from the Parity-Time symmetric domain wall. The robustness against coupling disorder is then examined, confirming the robustness of the topologically protected modes. The evolution with increasing disorder of the interface modes due to the Parity-Time symmetric domain wall is singular as they appear first as more robust than the cavity modes before diverging. These results show the ability of the onsite losses ingredient to control wavefields.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Su-Schrieffer-Heeger model inspired acoustic interface states and edge states
    Li, Xin
    Meng, Yan
    Wu, Xiaoxiao
    Yan, Sheng
    Huang, Yingzhou
    Wang, Shuxia
    Wen, Weijia
    APPLIED PHYSICS LETTERS, 2018, 113 (20)
  • [22] PT symmetry in the non-Hermitian Su-Schrieffer-Heeger model with complex boundary potentials
    Zhu, Baogang
    Lu, Rong
    Chen, Shu
    PHYSICAL REVIEW A, 2014, 89 (06):
  • [23] Breaking and resurgence of symmetry in the non-Hermitian Su-Schrieffer-Heeger model in photonic waveguides
    Slootman, E.
    Cherifi, W.
    Eek, L.
    Arouca, R.
    Bergholtz, E. J.
    Bourennane, M.
    Smith, C. Morais
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [24] Simple harmonic oscillation in a non-Hermitian Su-Schrieffer-Heeger chain at the exceptional point
    Zhang, K. L.
    Wang, P.
    Zhang, G.
    Song, Z.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [25] Existence and characterization of edge states in an acoustic trimer Su-Schrieffer-Heeger model
    Sougleridis, I. Ioannou
    Anastasiadis, A.
    Richoux, O.
    Achilleos, V.
    Theocharis, G.
    Pagneux, V.
    Diakonos, F. K.
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [26] Topology of an anti-parity-time symmetric non-Hermitian Su-Schrieffer-Heeger model
    Wu, H. C.
    Jin, L.
    Song, Z.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [27] Topological Phase Transition and Eigenstates Localization in a Generalized Non-Hermitian Su-Schrieffer-Heeger Model
    Zhang, Zhi-Xu
    Huang, Rong
    Qi, Lu
    Xing, Yan
    Zhang, Zhan-Jun
    Wang, Hong-Fu
    ANNALEN DER PHYSIK, 2021, 533 (01)
  • [28] Controllable entangled-state transmission in a non-Hermitian trimer Su-Schrieffer-Heeger chain
    Cao, Shao-Jun
    Zheng, Li-Na
    Cheng, Liu-Yong
    Wang, Hong-Fu
    PHYSICAL REVIEW A, 2024, 110 (06)
  • [29] Topology and PT symmetry in a non-Hermitian Su-Schrieffer-Heeger chain with periodic hopping modulation
    Mandal, Surajit
    Kar, Satyaki
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2025, 37 (09)
  • [30] Statistical properties of eigenvalues of the non-Hermitian Su-Schrieffer-Heeger model with random hopping terms
    Mochizuki, Ken
    Hatano, Naomichi
    Feinberg, Joshua
    Obuse, Hideaki
    PHYSICAL REVIEW E, 2020, 102 (01)