Chemotaxis-based smart drug delivery of epirubicin using a 3D printed microfluidic chip

被引:0
|
作者
Dalvand, Kolsoum [1 ]
Ghiasvand, A. [1 ,2 ]
Gupta, Vipul [2 ]
Paull, Brett [2 ]
机构
[1] Department of Chemistry, Lorestan University, Khoramabad, Iran
[2] Australian Centre for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart,Tasmania,7001, Australia
关键词
Controlled drug delivery - Electrolytes - Carrier concentration - Microfluidic chips - Biochemistry - Targeted drug delivery - Chlorine compounds - Ionic liquids - 3D printers;
D O I
暂无
中图分类号
学科分类号
摘要
Recent developments on self-propelled microdroplets, moving controllably in response to an external stimulus like chemical, electrical, or magnetic field, have opened a new horizon for smart drug delivery investigations. On the other hand, the new achievements in 3D printing technology has provided a promising option for the fabrication of microfluidic devices, which is an unrivalled platform for in-vitro drug delivery studies. By synergizing the features of chemotaxis, 3D printing, and microfluidic techniques a new approach was introduced to deliver the drug to targeted sites with a well-controlled method and a reasonable speed. A self-propelled ionic liquid ([P6,6,6,14][Cl]) microdroplet, as the drug carrier, was utilised for the targeted delivery of epirubicin anticancer drug within an integrated drug delivery microfluidic system. The asymmetric diffusion of [P6,6,6,14]+ ion from the microdroplet into an aqueous solution with chloride gradient concentration (created under an external electrical field) caused the microdroplet to move. The spatial and temporal position of the moving microdroplet could be controlled by changing the magnitude and polarity of the external electrical field. A piece of hollow-fiber, fixed next to the anode, was filled with phosphate buffer (as the receptor) and used to remove the drug from the carrier. The receptor solution was then taken and injected into a HPLC system for quantification of the released drug. After one-at-a-time optimization of the channel geometry and electrolyte concentration, the experimental variables affecting the drug loading including contact time, pH, and volume of carrier were optimized via a central composite design (CCD) approach. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] Transforming a well into a chip: A modular 3D-printed microfluidic chip
    Rauti, Rossana
    Ess, Adi
    Roi, Baptiste Le
    Kreinin, Yevgeniy
    Epshtein, Mark
    Korin, Netanel
    Maoz, Ben M.
    APL BIOENGINEERING, 2021, 5 (02)
  • [32] 3D Printed Punctal Plugs for Controlled Ocular Drug Delivery
    Xu, Xiaoyan
    Awwad, Sahar
    Diaz-Gomez, Luis
    Alvarez-Lorenzo, Carmen
    Brocchini, Steve
    Gaisford, Simon
    Goyanes, Alvaro
    Basit, Abdul W.
    PHARMACEUTICS, 2021, 13 (09)
  • [33] 3D printed drug delivery devices: perspectives and technical challenges
    Palo, Mirja
    Hollander, Jenny
    Suominen, Jaakko
    Yliruusi, Jouko
    Sandler, Niklas
    EXPERT REVIEW OF MEDICAL DEVICES, 2017, 14 (09) : 685 - 696
  • [34] Smart Textile Using 3D Printed Conductive Sequins
    Ma, Hua
    Yamaoka, Junichi
    TEI'22: PROCEEDINGS OF THE SIXTEENTH INTERNATIONAL CONFERENCE ON TANGIBLE, EMBEDDED, AND EMBODIED INTERACTION, 2022,
  • [35] 3D printed microneedles: revamping transdermal drug delivery systems
    Prabhu, Ashlesh
    Baliga, Vishal
    Shenoy, Raghavendra
    Dessai, Akanksha D.
    Nayak, Usha Y.
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2025, 15 (02) : 436 - 454
  • [36] Biodegradable 3D printed polymer microneedles for transdermal drug delivery
    Luzuriaga, Michael A.
    Berry, Danielle R.
    Reagan, John C.
    Smaldone, Ronald A.
    Gassensmith, Jeremiah J.
    LAB ON A CHIP, 2018, 18 (08) : 1223 - 1230
  • [37] Low cost 3D printed microneedles for transdermal drug delivery
    Luzuriaga, Michael
    Berry, Danielle
    Reagan, John
    Smaldone, Ronald
    Gassensmith, Jeremiah
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [38] A 3D Printed Smart Socket System Using IoT
    Zhang, Jiawei
    Qiu, Jing
    2019 9TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES), 2019,
  • [39] 3D Printed Paper-Based Microfluidic Analytical Devices
    He, Yong
    Gao, Qing
    Wu, Wen-Bin
    Nie, Jing
    Fu, Jian-Zhong
    MICROMACHINES, 2016, 7 (07):
  • [40] Silver-based SERS substrates fabricated using a 3D printed microfluidic device
    Sonexai, Phommachith
    Nguyen, Minh Van
    Huy, Bui The
    Lee, Yong -Ill
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2023, 14 : 793 - 803