Artificial intelligence, digital twins and the future of bridge management

被引:0
|
作者
Lorenzen S.R. [1 ]
Berthold H. [1 ]
Rupp M. [1 ]
Schmeiser L. [1 ]
Schneider J. [1 ]
Thiele C.-D. [2 ]
Brötzmann J. [2 ]
Rüppel U. [2 ]
机构
[1] Institut für Statik und Konstruktion, Technische Universität, Darmstadt
[2] Institut für Numerische Methoden und Informatik im Bauwesen, Technische Universität, Darmstadt
来源
VDI Berichte | 2022年 / 2022卷 / 2379期
关键词
Compendex;
D O I
10.51202/9783181023792-109
中图分类号
学科分类号
摘要
The ZEKISS research project, funded by the Federal Ministry of Transport and Digital Infrastructure (BMVI), investigates the combination of direct Structural Health Monitoring (SHM) with indirect SHM for railway bridges and vehicles using Artificial Intelligence (AI) methods, multi-body simulations and finite element model update. Direct SHM refers to the monito-ring/evaluation of the structure with measurements on the structure. Indirect SHM, on the other hand, uses measurements on structures that interact with the structure being monito-red (train measures bridge / bridge measures train). The presentation will give a brief introduction to AI and SHM. Finally, the concept of the Digital Twin for bridge monitoring will be presented in order to show how a uniform data management system for the entire bridge infrastructure network can be created on this basis. In the future, this will enable the imple-mentation of a self-improving system in the context of predictive maintenance. © 2022, VDI Verlag GMBH. All rights reserved.
引用
收藏
页码:109 / 124
页数:15
相关论文
共 50 条
  • [31] Radiation Dosimetry, Artificial Intelligence and Digital Twins: Old Dog, New Tricks
    Currie, Geoffrey M.
    Rohren, Eric M.
    SEMINARS IN NUCLEAR MEDICINE, 2023, 53 (03) : 457 - 466
  • [32] Incorporating Digital Twins and Artificial Intelligence for Next-Generation SHM Software
    Garcia-Macias, Enrique
    Alejandro Hernandez-Gonzalez, Israel
    Ubertini, Filippo
    PROCEEDINGS OF THE 10TH INTERNATIONAL OPERATIONAL MODAL ANALYSIS CONFERENCE, VOL 1, IOMAC 2024, 2024, 514 : 435 - 447
  • [33] Combination of Digital Twins and Artificial Intelligence Sensor-based Robotic Handling
    Enes, Kristina
    Stern, Oliver
    Breuers, Stefan
    Balzer, Jonathan
    Rossmann, Juergen
    ATP MAGAZINE, 2023, (05): : 88 - 96
  • [34] Intelligent Tensioning Method for Prestressed Cables Based on Digital Twins and Artificial Intelligence
    Liu, Zhansheng
    Shi, Guoliang
    Zhang, Anshan
    Huang, Chun
    SENSORS, 2020, 20 (24) : 1 - 20
  • [35] Digital Twins in 3D Printing Processes Using Artificial Intelligence
    Rojek, Izabela
    Marciniak, Tomasz
    Mikolajewski, Dariusz
    ELECTRONICS, 2024, 13 (17)
  • [37] The future of quality and accreditation surveys: Digital transformation and artificial intelligence
    Cayirtepe, Zuhal
    Senel, Figen Cizmeci
    INTERNATIONAL JOURNAL FOR QUALITY IN HEALTH CARE, 2022, 34 (02)
  • [38] The Future of Digital Education: Artificial Intelligence, the Metaverse, and the Transformation of Education
    Yildiz, Tolga
    ISTANBUL UNIVERSITESI SOSYOLOJI DERGISI-ISTANBUL UNIVERSITY JOURNAL OF SOCIOLOGY, 2024, 44 (02): : 969 - 988
  • [39] Integrating telepathology and digital pathology with artificial intelligence: An inevitable future
    Battazza, Alexandre
    Brasileiro, Felipe Cesar da Silva
    Tasaka, Ana Cristina
    Bulla, Camilo
    Ximenes, Pedro Pol
    Hosomi, Juliana Emi
    da Silva, Patricia Fernanda
    da Silva, Larissa Freire
    de Moura, Fernanda Barthelson Carvalho
    Rocha, Noeme Sousa
    VETERINARY WORLD, 2024, 17 (08) : 1667 - 1671
  • [40] DIGITAL TRANSFORMATION AND ARTIFICIAL INTELLIGENCE What future for documentary environments?
    Savard, Rejean
    DOCUMENTATION ET BIBLIOTHEQUES, 2024, 70 (03): : 4 - 4