Artificial intelligence, digital twins and the future of bridge management

被引:0
|
作者
Lorenzen S.R. [1 ]
Berthold H. [1 ]
Rupp M. [1 ]
Schmeiser L. [1 ]
Schneider J. [1 ]
Thiele C.-D. [2 ]
Brötzmann J. [2 ]
Rüppel U. [2 ]
机构
[1] Institut für Statik und Konstruktion, Technische Universität, Darmstadt
[2] Institut für Numerische Methoden und Informatik im Bauwesen, Technische Universität, Darmstadt
来源
VDI Berichte | 2022年 / 2022卷 / 2379期
关键词
Compendex;
D O I
10.51202/9783181023792-109
中图分类号
学科分类号
摘要
The ZEKISS research project, funded by the Federal Ministry of Transport and Digital Infrastructure (BMVI), investigates the combination of direct Structural Health Monitoring (SHM) with indirect SHM for railway bridges and vehicles using Artificial Intelligence (AI) methods, multi-body simulations and finite element model update. Direct SHM refers to the monito-ring/evaluation of the structure with measurements on the structure. Indirect SHM, on the other hand, uses measurements on structures that interact with the structure being monito-red (train measures bridge / bridge measures train). The presentation will give a brief introduction to AI and SHM. Finally, the concept of the Digital Twin for bridge monitoring will be presented in order to show how a uniform data management system for the entire bridge infrastructure network can be created on this basis. In the future, this will enable the imple-mentation of a self-improving system in the context of predictive maintenance. © 2022, VDI Verlag GMBH. All rights reserved.
引用
收藏
页码:109 / 124
页数:15
相关论文
共 50 条
  • [1] Artificial Intelligence and Ontologies for the Management of Heritage Digital Twins Data
    Felicetti, Achille
    Niccolucci, Franco
    DATA, 2025, 10 (01)
  • [2] Digital twins and artificial intelligence in transportation infrastructure: Classification, application, and future research directions
    Wu, Jingyi
    Wang, Xiao
    Dang, Yukun
    Lv, Zhihan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [3] Digital twins and artificial intelligence in metabolic disease research
    Mosquera-Lopez, Clara
    Jacobs, Peter G.
    TRENDS IN ENDOCRINOLOGY AND METABOLISM, 2024, 35 (06): : 549 - 557
  • [4] Artificial Intelligence in Underwater Digital Twins Sensor Networks
    Lv, Zhihan
    Chen, Dongliang
    Feng, Hailin
    Wei, Wei
    Lv, Haibin
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2022, 18 (03)
  • [5] Digital Twins Generated by Artificial Intelligence in Personalized Healthcare
    Lukaniszyn, Marian
    Majka, Lukasz
    Grochowicz, Barbara
    Mikolajewski, Dariusz
    Kawala-Sterniuk, Aleksandra
    APPLIED SCIENCES-BASEL, 2024, 14 (20):
  • [6] Artificial intelligence and digital twins in sustainable agriculture and forestry: a survey
    Nie, Jing
    Wang, Yi
    Li, Yang
    Chao, Xuewei
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2022, 46 (05) : 642 - 661
  • [7] A review of digital twins and their application in cybersecurity based on artificial intelligence
    Homaei, Mohammadhossein
    Mogollon-Gutierrez, Oscar
    Sancho, Jose Carlos
    Avila, Mar
    Caro, Andres
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (08)
  • [8] Digital Twins and Artificial Intelligence as Pillars of Personalized Learning Models
    Furini, Marco
    Gaggi, Ombretta
    Mirri, Silvia
    Montangero, Manuela
    Pelle, Elvira
    Poggi, Francesco
    Prandi, Catia
    COMMUNICATIONS OF THE ACM, 2022, 65 (04) : 98 - 104
  • [9] DIGITAL TWINS MEET ARTIFICIAL INTELLIGENCE IN 6G
    Lin, Xingqin
    Zhang, Jun
    Karimpour, Hadis
    Wen, Chao-Kai
    IEEE COMMUNICATIONS MAGAZINE, 2024, 62 (02) : 93 - 93
  • [10] Railway Digital Twins and Artificial Intelligence: Challenges and Design Guidelines
    Dirnfeld, Ruth
    De Donato, Lorenzo
    Flammini, Francesco
    Azari, Mehdi Saman
    Vittorini, Valeria
    DEPENDABLE COMPUTING, EDCC 2022 WORKSHOPS, 2022, 1656 : 102 - 113