Fault Ride-Through Strategy of New Energy through Flexible DC Based on Wind Power Shedding and Energy Consumption Device

被引:1
|
作者
Xu Sixuan [1 ]
Zhao Feifei [1 ]
Liu Guojing [1 ]
Wang Quanquan [1 ]
Wan Lu [1 ]
机构
[1] State Grid Jiangsu Elect Power Co LTD, Econ Res Inst, Nanjing, Peoples R China
关键词
new energy; flexible and straight; fault ride-through; wind power load shedding; energy-consuming devices;
D O I
10.1109/ACFPE59335.2023.10455740
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In response to the DC side over-voltage problem caused by the inability of the flexible DC system to actively regulate the active power conveyed by the system and the slow regulation of wind turbines during the AC system failure of the receiving end in the flexible DC transmission system of new energy, a new system fault traversal strategy that considers wind power load shedding and energy consumption devices. Firstly, the over-voltage mechanism of the flexible direct transmission system in the new energy base was analyzed, and then a wind power load shedding strategy was proposed based on the requirement of wind turbine low voltage crossing; Finally, when the fault at the receiving end exceeds the load shedding adjustment margin, the optimized direct current energy consumption equipment is proposed, and a joint crossing control method combining wind farm voltage reduction and load shedding with DC energy consumption device is proposed. The simulation results show that the joint ride through control method can improve the economy and fault ride through capability of the wind power flexible direct transmission system and achieve stable control of DC voltage.
引用
收藏
页码:706 / 710
页数:5
相关论文
共 50 条
  • [31] Smoothing of Wind Power Fluctuations for Permanent Magnet Synchronous Generator-Based Wind Energy Conversion System and Fault Ride-through Consideration
    Pratap, Alok
    Ziadi, Zakaria
    Urasaki, Naomitsu
    Senjyu, Tomonobu
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2015, 43 (03) : 271 - 281
  • [32] A New Hybrid Submodule for MMC with DC Fault Ride-Through Capability
    Rudrasimha, Yedida Ayyappa
    Ghat, Mahendra B.
    Shukla, Anshuman
    2018 IEEE INTERNATIONAL CONFERENCE ON POWER ELECTRONICS, DRIVES AND ENERGY SYSTEMS (PEDES), 2018,
  • [33] Flexible fault ride through strategy for wind farm clusters in power systems with high wind power penetration
    Wang, Songyan
    Chen, Ning
    Yu, Daren
    Foley, Aoife
    Zhu, Lingzhi
    Li, Kang
    Yu, Jilai
    ENERGY CONVERSION AND MANAGEMENT, 2015, 93 : 239 - 248
  • [34] Chopperless Fault Ride-Through Control for DC Microgrids
    Xia, Yanghong
    Long, Teng
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (02) : 965 - 976
  • [35] Improved Crowbar Control Strategy of DFIG Based Wind Turbines for Grid Fault Ride-Through
    Peng, Ling
    Francois, Bruno
    Li, Yongdong
    APEC: 2009 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, VOLS 1- 4, 2009, : 1932 - +
  • [36] Fault Ride-Through Characteristics of Small Wind Turbines
    Kondoh, Junji
    Mizuno, Hidetoshi
    Funamoto, Takuji
    ENERGIES, 2019, 12 (23)
  • [37] Wind-turbine fault ride-through enhancement
    Mullane, Alan
    Lightbody, Gordon
    2006 POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS 1-9, 2006, : 3644 - 3644
  • [38] Fault ride-through capability of DFIG wind turbines
    Hansen, Anca D.
    Michalke, Gabriele
    RENEWABLE ENERGY, 2007, 32 (09) : 1594 - 1610
  • [39] A Unified DC Link Current Control Scheme for Grid Fault Ride-Through in Current Source Converter Based Wind Energy Conversion Systems
    Dai, Jingya
    Xu, Dewei
    Wu, Bin
    Zargari, Navid R.
    2009 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION, VOLS 1-6, 2009, : 1321 - +
  • [40] Protection for Low-voltage DC Distribution Network Based on Fault Ride-through Strategy of Power Electronic Transformer
    Zheng T.
    Guo Y.
    Lyu W.
    Piao Y.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (16): : 152 - 161