Customizing oxygen electrocatalytic microenvironment with S, N codoped carbon nanofibers confining carbon nanocapsules and Co9S8 nanoparticles for rechargeable Zn-air batteries

被引:0
|
作者
Yang C. [1 ]
Chen J. [1 ]
Yan L. [2 ]
Gao Y. [3 ]
Ning J. [4 ]
Hu Y. [1 ,2 ]
机构
[1] Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua
[2] College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou
[3] Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua
[4] Department of Optical Science and Engineering, Fudan University, Shanghai
基金
中国国家自然科学基金;
关键词
Carbon fibers; Co[!sub]9[!/sub]S[!sub]8[!/sub; Microenvironment; Oxygen electrocatalyst; Rechargeable Zn-air batteries;
D O I
10.1016/j.apcatb.2024.124060
中图分类号
学科分类号
摘要
Rational design and modulation of oxygen electrocatalytic microenvironment are crucial for achieving high performance in rechargeable Zn-air batteries (RZABs). We report a high-efficiency bifunctional electrocatalyst based on S, N codoped carbon fibers confining carbon nanocapsules attached with Co9S8 nanoparticles to customize the oxygen electrocatalytic microenvironment. The inner carbon nanocapsules function as a “gas buffer”, while the outer fiber skeleton acts as a self-supporting structure, which jointly refine the oxygen electrocatalytic microenvironment and improve accessibility of the active sites. Such a unique nanostructure proves advantageous for O2 adsorption/diffusion and mitigation of local pH changes during oxygen reduction reaction, and favors the release of generated O2 and the transfer of interfacial electron during the oxygen evolution reaction as well. The constructed liquid RZABs deliver a large peak power density (280 mW cm−2) and robust cyclability (1200 h at 10 mA cm−2), and the assembled quasi-solid state flexible RZABs further indicate long-term durability. © 2024 Elsevier B.V.
引用
收藏
相关论文
共 50 条
  • [31] Modest modulation on the electronic structure of Co9S8 by vanadium doping for high-performance rechargeable Zn-air batteries
    Wu, Lin
    Li, Shuxin
    Li, Lixiang
    Zhang, Han
    Tao, Lin
    Geng, Xin
    Yang, Haiming
    Zhou, Weimin
    Sun, Chengguo
    Ju, Dongying
    An, Baigang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2023, 324
  • [32] Co nanoparticles encapsulated in N-doped carbon nanofibers as bifunctional catalysts for rechargeable Zn-air battery
    Li, Huizheng
    An, Mingqi
    Zhao, Yuwei
    Pi, Shuai
    Li, Chunjian
    Sun, Wei
    Wang, Heng-guo
    APPLIED SURFACE SCIENCE, 2019, 478 : 560 - 566
  • [33] Co9S8 activated N/S co-doped carbon tubes in situ grown on carbon nanofibers for efficient oxygen reduction
    Wang, Fang
    Liu, Ting
    Guo, Yaofang
    Li, Wenzhen
    Qi, Ji
    Rooney, David
    Sun, Kening
    RSC ADVANCES, 2017, 7 (55) : 34763 - 34769
  • [34] Co and CeO2 co-decorated N-doping carbon nanofibers for rechargeable Zn-air batteries
    Zhang, Zhengmei
    Gao, Daqian
    Xue, Desheng
    Liu, Yonggang
    Liu, Peitao
    Zhang, Jingyan
    Qian, Jinmei
    NANOTECHNOLOGY, 2019, 30 (39)
  • [35] Perovskite nanoparticles@N-doped carbon nanofibers as robust and efficient oxygen electrocatalysts for Zn-air batteries
    Lin, Haoqing
    Xie, Jiao
    Zhang, Zhenbao
    Wang, Shaofeng
    Chen, Dengjie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 581 : 374 - 384
  • [36] Interconnected Hierarchically Porous Fe, N-Codoped Carbon Nanofibers as Efficient Oxygen Reduction Catalysts for Zn-Air Batteries
    Zhao, Yingxuan
    Lai, Qingxue
    Wang, Ya
    Zhu, Junjie
    Liang, Yanyu
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (19) : 16178 - 16186
  • [37] Co3O4 nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn-air batteries
    Qiu, Liuzhe
    Han, Xiaopeng
    Lu, Qi
    Zhao, Jun
    Wang, Yang
    Chen, Zelin
    Zhong, Cheng
    Hu, Wenbin
    Deng, Yida
    INORGANIC CHEMISTRY FRONTIERS, 2019, 6 (12): : 3554 - 3561
  • [38] Bubble-like Fe-encapsulated N,S-codoped carbon nanofibers as efficient bifunctional oxygen electrocatalysts for robust Zn-air batteries
    She, Yiyi
    Liu, Jin
    Wang, Hongkang
    Li, Li
    Zhou, Jinsong
    Leung, Michael K. H.
    NANO RESEARCH, 2020, 13 (08) : 2175 - 2182
  • [39] Dual-Phasic Carbon with Co Single Atoms and Nanoparticles as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries
    Li, Jin-Cheng
    Meng, Yu
    Zhang, Lili
    Li, Guanzhou
    Shi, Zhicong
    Hou, Peng-Xiang
    Liu, Chang
    Cheng, Hui-Ming
    Shao, Minhua
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (42)
  • [40] Thermal Engineering of NiCo-Codoped Carbon Nanofibers toward Enhanced Oxygen Electrocatalysis for Zn-Air Batteries
    Liu, Chaojun
    Zong, Xin
    Jin, Yingmin
    Lin, Ruifan
    Xiong, Yueping
    ENERGY TECHNOLOGY, 2021, 9 (08)