Two-level machine learning driven intrusion detection model for IoT environments

被引:2
|
作者
Malhi, Yuvraj Singh [1 ]
Shekhawat, Virendra Singh [2 ]
机构
[1] Birla Inst Technol & Sci, Dept Elect & Elect, Pilani, Rajasthan, India
[2] Birla Inst Technol & Sci, Dept Comp Sci & Informat Syst, New Acad Block 6121-R, Pilani, Rajasthan, India
关键词
deep learning; machine learning; intrusion detection system; IDS; random forest; network security; internet of things; IoT; denial-of-service; DoS; soft computing; modular detection; IoT security;
D O I
10.1504/IJICS.2023.132708
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As a consequence of the growing number of cyberattacks on IoT devices, the need for defences like intrusion detection systems (IDSs) has significantly risen. But current IDS implementations for IoT are complex to design, difficult to incorporate, platform-specific, and limited by IoT device's resource constraints. This paper proposes a deployment-ready network IDS for IoT that overcomes the shortcomings of the existing IDS solutions and can detect 22 types of attacks. The proposed IDS provide the flexibility to work in multiple modes as per IoT device computing power, made possible via development of three machine learning-based IDS modules. The intrusion detection task has been divided at two levels: at edge devices (using two light modules based on neural network and decision tree) and at centralised controller (using a random forest and XGBoost combination). To ensure the best working tandem of developed modules, different IDS deployment strategies are also given.
引用
收藏
页码:229 / 261
页数:34
相关论文
共 50 条
  • [41] Maximizing intrusion detection efficiency for IoT networks using extreme learning machine
    Altamimi S.
    Abu Al-Haija Q.
    Discover Internet of Things, 2024, 4 (01):
  • [42] Feature extraction for machine learning-based intrusion detection in IoT networks
    Mohanad Sarhan
    Siamak Layeghy
    Nour Moustafa
    Marcus Gallagher
    Marius Portmann
    Digital Communications and Networks, 2024, 10 (01) : 205 - 216
  • [43] Intrusion Detection System Using Feature Extraction with Machine Learning Algorithms in IoT
    Musleh, Dhiaa
    Alotaibi, Meera
    Alhaidari, Fahd
    Rahman, Atta
    Mohammad, Rami M.
    JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2023, 12 (02)
  • [44] Machine Learning-based Intrusion Detection for IoT Devices in Smart Home
    Li, Taotao
    Hong, Zhen
    Yu, Li
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON CONTROL & AUTOMATION (ICCA), 2020, : 277 - 282
  • [45] A Comparative Analysis of Machine Learning Algorithms for Distributed Intrusion Detection in IoT Networks
    Vieira, Moroni N.
    Oliveira, Luciana P.
    Carneiro, Leonardo
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, AINA-2022, VOL 1, 2022, 449 : 249 - 258
  • [46] Feature extraction for machine learning-based intrusion detection in IoT networks
    Sarhan, Mohanad
    Layeghy, Siamak
    Moustafa, Nour
    Gallagher, Marcus
    Portmann, Marius
    DIGITAL COMMUNICATIONS AND NETWORKS, 2024, 10 (01) : 205 - 216
  • [47] Machine learning based network intrusion detection for data streaming IoT applications
    Yahyaoui, Aymen
    Lakhdhar, Haithem
    Abdellatif, Takoua
    Attia, Rabah
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 51 - 56
  • [48] Data Driven Network Monitoring and Intrusion Detection using Machine Learning
    Williams, Brandon
    Dong, Xishuang
    Qian, Lijun
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2020, : 262 - 268
  • [49] DDoS Attacks Detection based on Machine Learning Algorithms in IoT Environments
    Manaa, Mehdi Ebady
    Hussain, Saba M.
    Alasadi, Suad A.
    A.A.Al-Khamees, Hussein
    INTELIGENCIA ARTIFICIAL-IBEROAMERICAN JOURNAL OF ARTIFICIAL INTELLIGENCE, 2024, 27 (74): : 152 - 165
  • [50] Hybrid Intrusion Detection System for RPL IoT Networks Using Machine Learning and Deep Learning
    Shahid, Usama
    Hussain, Muhammad Zunnurain
    Hasan, Muhammad Zulkifl
    Haider, Ali
    Ali, Jibran
    Altaf, Jawad
    IEEE ACCESS, 2024, 12 : 113099 - 113112