Research progress of crystalline silicon solar cells

被引:0
|
作者
Zhang, Yunlong [1 ,2 ]
Chen, Xinliang [1 ,2 ]
Zhou, Zhongxin [1 ,2 ]
Zhao, Ying [1 ,2 ]
Zhang, Xiaodan [1 ,2 ]
机构
[1] Institute of Photoelectronics Thin Film Devices and Technology of Nankai University, Tianjin,300350, China
[2] Key Laboratory of Photoelectronics Thin Film Devices and Technology of Tianjin, Tianjin,300350, China
来源
关键词
Metals - Silicon solar cells - Passivation - Amorphous silicon - Open circuit voltage - Temperature - Point contacts;
D O I
10.19912/j.0254-0096.tynxb.2019-1032
中图分类号
学科分类号
摘要
In this article, we mainly introduce basic working principle of solar cells and properties of c-Si, as well as discuss the effects of oxide passivation layer on c-Si solar cells from the perspective of the minority carrier recombination. Research status and perspective of four typical c-Si solar cells are reviewed and the corresponding physical mechanisms for achieving high efficiency are discussed: 1)The passivated emitter solar cells adopt a heavily doped point contact structure on the back to reduce the contact area between the c-Si and metal to reduce recombination loss; 2)Intrinsic amorphous silicon thin layers of the silicon heterojunction (SHJ) solar cells provide high quality interface passivation and the heterogeneous contact between the c-Si and the amorphous silicon enhances the open circuit voltage (Voc) of the devices; 3) Tunnel oxide passivated contact (TOPCon) solar cells are based on an ultra-thin tunnel oxide (SiOx) and a phosphorus-doped silicon layer, which significantly lowers the surface recombination at the metal-semiconductor interface; and 4) Novel selective contact solar cells (like DASH device) uses low temperature dopant-free metal oxide as an electron/hole selective layer to achieve efficient collection for photogenerated carriers. © 2021, Solar Energy Periodical Office Co., Ltd. All right reserved.
引用
收藏
页码:49 / 60
相关论文
共 50 条
  • [41] Passivating contacts for crystalline silicon solar cells
    Allen, Thomas G.
    Bullock, James
    Yang, Xinbo
    Javey, Ali
    De Wolf, Stefaan
    [J]. NATURE ENERGY, 2019, 4 (11) : 914 - 928
  • [42] Passivating contacts for crystalline silicon solar cells
    Thomas G. Allen
    James Bullock
    Xinbo Yang
    Ali Javey
    Stefaan De Wolf
    [J]. Nature Energy, 2019, 4 : 914 - 928
  • [43] The role of hydrogen for crystalline silicon solar cells
    Shao, Jianbo
    Xi, Xi
    Liu, Guilin
    Luo, Feng
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2023, 25 (5-6): : 228 - 240
  • [44] Milestones in the development of crystalline silicon solar cells
    Treble, Fred
    [J]. Renewable energy, 1998, 15 (1 -4 pt 1): : 473 - 478
  • [45] Raising the efficiency of crystalline silicon solar cells
    Muminov, R.A.
    Faziev, U.Kh.
    Tursunov, M.N.
    Abdiev, U.
    [J]. Applied Solar Energy (English translation of Geliotekhnika), 2005, 41 (03): : 15 - 21
  • [46] The Physics of Industrial Crystalline Silicon Solar Cells
    Breitenstein, Otwin
    [J]. ADVANCES IN PHOTOVOLTAICS, PT 2, 2013, 89 : 1 - 75
  • [47] Substrates for thin crystalline silicon solar cells
    Australian Natl Univ, Canberra, Australia
    [J]. Sol Energ Mater Sol Cells, 3-4 (385-392):
  • [48] Numerical simulation for crystalline silicon solar cells
    School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China
    不详
    不详
    [J]. Faguang Xuebao, 2012, 6 (660-664):
  • [49] Polyaniline on crystalline silicon heterojunction solar cells
    Wang, Weining
    Schiff, E. A.
    [J]. APPLIED PHYSICS LETTERS, 2007, 91 (13)
  • [50] The industrial technology of crystalline silicon solar cells
    Lipinski, M
    Panek, P
    Ciach, R
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2003, 5 (05): : 1365 - 1371