Lagrangian coherent structures in space plasmas

被引:0
|
作者
Rempel, Erico L. [1 ,2 ]
Chian, Abraham C. -L. [2 ,3 ]
Silva, Suzana de S. A. [4 ]
Fedun, Viktor [4 ]
Verth, Gary [5 ]
Miranda, Rodrigo A. [6 ,7 ]
Gosic, Milan [8 ,9 ]
机构
[1] Aeronaut Inst Technol ITA, Dept Math, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Natl Inst Space Res INPE, Div Space Geophys, BR-12227010 Sao Jose Dos Campos, SP, Brazil
[3] Univ Adelaide, Sch Comp & Math Sci, Adelaide, SA 5005, Australia
[4] Univ Sheffield, Dept Automat Control & Syst Engn, Plasma Dynam Grp, Sheffield, England
[5] Univ Sheffield, Sch Math & Stat, Plasma Dynam Grp, Sheffield, England
[6] Univ Brasilia, UnB Gama Campus, BR-70910900 Brasilia, DF, Brazil
[7] Univ Brasilia, Inst Phys, BR-70910900 Brasilia, DF, Brazil
[8] Lockheed Martin Solar & Astrophys Lab, Palo Alto, CA 94304 USA
[9] Bay Area Environm Res Inst, Moffett Field, CA 94035 USA
来源
REVIEWS OF MODERN PLASMA PHYSICS | 2023年 / 7卷 / 01期
基金
英国科学技术设施理事会;
关键词
Lagrangian coherent structures; Space plasmas; Solar photosphere; MHD simulations; WEAKLY COLLISIONAL PLASMAS; ELECTRON HOLES; PHASE-SPACE; ION HOLES; NEGATIVE-ENERGY; SOLITARY HOLES; KINETIC-THEORY; DYNAMICS; STABILITY; VORTICES;
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Space plasmas can be described as conducting flows in a turbulent state, where fluid motion is determined by a host of kinetic and magnetic coherent structures of different types. Identifying and following the evolution of those structures is crucial for a deep understanding, and possibly, the forecasting of plasma behaviour. Lagrangian coherent structures constitute a recently devised theory to describe material transport in fluids, with mathematical approaches carefully developed to detect the main transport barriers responsible for controlling fluid flows. In this work, we review the application of this theory to space plasmas using numerical simulations and satellite observations. In particular, the results show that Lagrangian coherent structures can be used to better understand complex plasma phenomena in the solar atmosphere.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Eulerian and Lagrangian coherent structures in a positive surge
    L. Thomas
    L. David
    [J]. Experiments in Fluids, 2022, 63
  • [32] Dynamic isoperimetry and the geometry of Lagrangian coherent structures
    Froyland, Gary
    [J]. NONLINEARITY, 2015, 28 (10) : 3587 - 3622
  • [33] Lagrangian coherent structures along atmospheric rivers
    Garaboa-Paz, Daniel
    Eiras-Barca, Jorge
    Huhn, Florian
    Perez-Munuzuri, Vicente
    [J]. CHAOS, 2015, 25 (06)
  • [34] Eulerian and Lagrangian coherent structures in a positive surge
    Thomas, L.
    David, L.
    [J]. EXPERIMENTS IN FLUIDS, 2022, 63 (02)
  • [35] Space-Time Bifurcation Lines for Extraction of 2D Lagrangian Coherent Structures
    Machado, Gustavo
    Boblest, Sebastian
    Ertl, Thomas
    Sadlo, Filip
    [J]. COMPUTER GRAPHICS FORUM, 2016, 35 (03) : 91 - 100
  • [36] Coherent structures and transport properties in magnetized plasmas
    Serianni, G.
    Agostini, M.
    Antoni, V.
    Cavazzana, R.
    Martines, E.
    Sattin, F.
    Scarin, P.
    Spada, E.
    Spolaore, M.
    Vianello, N.
    Zuin, M.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (12B) : B267 - B280
  • [37] Identification of Coherent Flow Structures in Nonequilibrium Plasmas
    Trelles, Juan Pablo
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2014, 42 (10) : 2852 - 2853
  • [38] Non-linear coherent structures of kinetic Alfven waves in plasmas with non-Maxwellian electrons and their relevance for space plasmas
    Devi, Nirupama
    Chaharia, Rumi
    [J]. PHYSICS OF PLASMAS, 2017, 24 (04)
  • [39] Lagrangian coherent structures in the human carotid artery bifurcation
    Vetel, Jerome
    Garon, Andre
    Pelletier, Dominique
    [J]. EXPERIMENTS IN FLUIDS, 2009, 46 (06) : 1067 - 1079
  • [40] Extracting Lagrangian coherent structures in the Kuroshio current system
    Tian, Fenglin
    He, Qiu
    Liu, ZhanPing
    Chen, Ge
    [J]. OCEAN DYNAMICS, 2019, 69 (06) : 641 - 656