Reinforcement learning-based resource allocation for dynamic aggregated WiFi/VLC HetNet

被引:1
|
作者
Luo, Liujun [1 ]
Bai, Bo [1 ]
Zhang, Xiaowei [1 ]
Han, Guoqing [1 ]
机构
[1] Xidian Univ, Sch Commun Engn, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous network; Visible light communication; Resource allocation; Reinforcement learning; Handover overhead; POWER ALLOCATION; VLC; NETWORKS; SYSTEMS; LIFI;
D O I
10.1016/j.optcom.2024.130450
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High transmission rates and low power consumption make visible light communication (VLC) a highly promising supplementary technology for the next generation of mobile communication. Taking into account the limited coverage area, VLC can be combined with WiFi as a heterogeneous network (HetNet), thanks to their non-overlapping spectrum. In order to fully utilize the advantages of the WiFi and VLC technologies, a new aggregated WiFi/VLC HetNet consisting of a single WiFi AP and multiple VLC APs, is designed, where the user equipment (UE), for the first time, can access multiple VLC APs and one WiFi AP simultaneously, and be allowed to acquire multiple resource blocks (RB) in each AP at the same time. To optimize the performance of the above designed HetNet, a multi-objective optimization problem (MOOP) is formulated, which aims to maximize system throughput while reducing the handover rate. Since the above MOOP is nonconvex and nonlinear, the traditional resource allocation (RA) algorithm has a complex calculation process and poor timeliness performance to deal with this problem. To solve the above MOOP, a reinforcement learning (RL)-based RA algorithm is proposed, and considering the RB handover overhead in the aggregated WiFi/VLC HetNet, a reward function related to the system throughput and the UE handover rate is carefully designed. System throughput, system handover rate, user satisfaction, as well as user fairness performance are analyzed under three typical indoor illumination layouts. Finally, compared with the greedy algorithm and the hypergraph-based carrier aggregation algorithm, numerical results show that the proposed RL-based RA algorithm could improve the system throughput over the former two algorithms by 30.26% and 19.71%, while reducing the system handover rate by 0.15% and 0.02%, respectively.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Dynamic Resource Allocation in Network Slicing with Deep Reinforcement Learning
    Cai, Yue
    Cheng, Peng
    Chen, Zhuo
    Xiang, Wei
    Vucetic, Branka
    Li, Yonghui
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 2955 - 2960
  • [42] Reinforcement Learning Enabled Dynamic Resource Allocation in the Internet of Vehicles
    Liang, Hongbin
    Zhang, Xiaohui
    Hong, Xintao
    Zhang, Zongyuan
    Li, Mushu
    Hu, Guangdi
    Hou, Fen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (07) : 4957 - 4967
  • [43] A reinforcement learning framework for dynamic resource allocation: First results
    Vengerov, D
    Iakovlev, N
    ICAC 2005: Second International Conference on Autonomic Computing, Proceedings, 2005, : 339 - 340
  • [44] Deep Reinforcement Learning-based Dynamic Bandwidth Allocation in Weighted Fair Queues of Routers
    Pan, Jinyan
    Chen, Gang
    Wu, Haoran
    Peng, Xi
    Xia, Li
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 1580 - 1587
  • [45] Deep Reinforcement Learning-Based Resource Allocation for Cellular V2X Communications
    Chung, Yi-Ching
    Chang, Hsin-Yuan
    Chang, Ronald Y.
    Chung, Wei -Ho
    2023 IEEE 97TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-SPRING, 2023,
  • [46] Reinforcement Learning-Based Resource Allocation for Streaming in a Multi-Modal Deep Space Network
    Ha, Taeyun
    Oh, Junsuk
    Lee, Donghyun
    Lee, Jeonghwa
    Jeon, Yongin
    Cho, Sungrae
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 201 - 206
  • [47] Deep Reinforcement Learning-Based Video Offloading and Resource Allocation in NOMA-Enabled Networks
    Gao, Siyu
    Wang, Yuchen
    Feng, Nan
    Wei, Zhongcheng
    Zhao, Jijun
    FUTURE INTERNET, 2023, 15 (05):
  • [48] Reinforcement Learning-Based User Scheduling and Resource Allocation for Massive MU-MIMO System
    Bu, Gaojing
    Jiang, Jing
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2019,
  • [49] Deep Reinforcement Learning-Based Resource Allocation in Cooperative UAV-Assisted Wireless Networks
    Luong, Phuong
    Gagnon, Francois
    Tran, Le-Nam
    Labeau, Fabrice
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7610 - 7625
  • [50] A Reinforcement Learning-Based Green Resource Allocation for Heterogeneous Services in Cooperative Cognitive Radio Networks
    Kaur, Amandeep
    Kumar, Krishan
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2022, 19 (02): : 1554 - 1566