ERDUnet: An Efficient Residual Double-Coding Unet for Medical Image Segmentation

被引:5
|
作者
Li, Hao [1 ]
Zhai, Di-Hua [1 ,2 ]
Xia, Yuanqing [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Yangtze Delta Reg Acad, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Medical image segmentation; deep learning; encoder-decoder network; convolutional neural network; reduce parameter scale; U-NET; ATTENTION;
D O I
10.1109/TCSVT.2023.3300846
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Medical image segmentation is widely used in clinical diagnosis, and methods based on convolutional neural networks have been able to achieve high accuracy. However, it is still difficult to extract global context features, and the parameters are too large to be clinically applied. In this regard, we propose a novel network structure to improve the traditional encoder-decoder network model, which saves parameters while maintaining segmentation accuracy. We improve the feature extraction efficiency by constructing an encoder module that can simultaneously extract local features and global continuity information. A novel attention module is designed to optimize segmentation boundary regions while improving training efficiency. The feature transfer structure of the decoding part is also improved, which fully integrates the features of different levels to restore the spatial resolution more finely. We evaluate our model on seven different medical segmentation datasets, the 2018 Data Science Bowl Challenge (DSBC2018), the 2018 Lesion Boundary Segmentation Challenge (ISIC2018), the Gland Segmentation in Colon Histology Images Challenge (GlaS), Kvasir-SEG, CVC-ClinicDB, Kvasir-Instrument and Polypgen. Extensive experimental results show that our model can achieve good segmentation performance while maintaining a small number of parameters and computational load, which can further facilitate the generalization of the theoretical approach to clinical practice. Our code will be released at https://github.com/caijilia/ERDUnet.
引用
收藏
页码:2083 / 2096
页数:14
相关论文
共 50 条
  • [31] UCSwin-UNet model for medical image segmentation based on cardiac haemangioma
    Shi, Jian-Ting
    Qu, Gui-Xu
    Li, Zhi-Jun
    IET IMAGE PROCESSING, 2024,
  • [32] N-Net: an UNet architecture with dual encoder for medical image segmentation
    Liang, Bingtao
    Tang, Chen
    Zhang, Wei
    Xu, Min
    Wu, Tianbo
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (06) : 3073 - 3081
  • [33] Pie-UNet: A Novel Parallel Interaction Encoder for Medical Image Segmentation
    Jiang, Youtao
    Zhang, Xiaoqian
    Chen, Yufeng
    Yang, Shukai
    Sun, Feng
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT II, 2023, 14255 : 558 - 569
  • [34] N-Net: an UNet architecture with dual encoder for medical image segmentation
    Bingtao Liang
    Chen Tang
    Wei Zhang
    Min Xu
    Tianbo Wu
    Signal, Image and Video Processing, 2023, 17 : 3073 - 3081
  • [35] VIG-UNET: VISION GRAPH NEURAL NETWORKS FOR MEDICAL IMAGE SEGMENTATION
    Jiang, Juntao
    Chen, Xiyu
    Tian, Guanzhong
    Liu, Yong
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [36] MFLUnet: multi-scale fusion lightweight Unet for medical image segmentation
    Cao, Dianlei
    Zhang, Rui
    Zhang, Yunfeng
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (10): : 5574 - 5591
  • [37] LeViT-UNet: Make Faster Encoders with Transformer for Medical Image Segmentation
    Xu, Guoping
    Zhang, Xuan
    He, Xinwei
    Wu, Xinglong
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 42 - 53
  • [38] DC-UNet: Rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation
    Lou, Ange
    Guan, Shuyue
    Loew, Murray
    Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 2021, 11596
  • [39] EPolar-UNet: An edge-attending polar UNet for automatic medical image segmentation with small datasets
    Ling, Yating
    Wang, Yuling
    Liu, Qian
    Yu, Jie
    Xu, Lei
    Zhang, Xiaoqian
    Liang, Ping
    Kong, Dexing
    MEDICAL PHYSICS, 2024, 51 (03) : 1702 - 1713
  • [40] EFFICIENT BINARY CNN FOR MEDICAL IMAGE SEGMENTATION
    Brahma, Kaustav
    Kumar, Viksit
    Samir, Anthony E.
    Chandrakasan, Anantha P.
    Eldar, Yonina C.
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 817 - 821