Contextual quantum metrology

被引:0
|
作者
Jae, Jeongwoo [1 ,2 ]
Lee, Jiwon [1 ]
Kim, M. S. [3 ]
Lee, Kwang-Geol [1 ]
Lee, Jinhyoung [1 ,4 ]
机构
[1] Hanyang Univ, Dept Phys, Seoul 04763, South Korea
[2] Samsung SDS, R&D Ctr, Seoul 05510, South Korea
[3] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[4] Korea Inst Sci & Technol KIST, Ctr Quantum Simulat, Seoul 02792, South Korea
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
ENTANGLEMENT; LIGO;
D O I
10.1038/s41534-024-00862-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate that the contextuality of measurement selection can enhance the precision of quantum metrology with a simple linear optical experiment. Contextuality is a nonclassical property known as a resource for various quantum information processing tasks. Recent studies show that contextuality by anomalous weak values can be utilized to enhance metrological precision, unraveling the role of contextuality in quantum metrology. Our contextual quantum metrology (coQM) scheme can elevate the precision of the optical polarimetry as much as 6 times the precision limit given by the Quantum Fisher Information. We achieve the contextuality-enabled enhancement with two mutually complementary measurements, whereas, in the conventional method, some optimal measurements to achieve the precision limit are either theoretically challenging to find or experimentally infeasible to realize. These results highlight that the contextuality of measurement selection is applicable in practice for quantum metrology.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Quantum metrology with quantum-chaotic sensors
    Lukas J. Fiderer
    Daniel Braun
    Nature Communications, 9
  • [32] Quantum metrology with delegated tasks
    Shettell, Nathan
    Markham, Damian
    PHYSICAL REVIEW A, 2022, 106 (05)
  • [33] Quantum metrology with entangled photons
    Sergienko, AV
    RECENT ADVANCES IN METROLOGY AND FUNDAMENTAL CONSTANTS, 2001, 146 : 715 - 746
  • [34] Estimation of gradients in quantum metrology
    Altenburg, Sanah
    Oszmaniec, Michal
    Wolk, Sabine
    Guhne, Otfried
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [35] Quantum metrology in correlated environments
    Xie, Dong
    Wang, An Min
    PHYSICS LETTERS A, 2014, 378 (30-31) : 2079 - 2084
  • [36] Quantum metrology with imperfect measurements
    Len, Yink Loong
    Gefen, Tuvia
    Retzker, Alex
    Kolodynski, Jan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [37] Quantum-dense metrology
    Steinlechner, Sebastian
    Bauchrowitz, Joeran
    Meinders, Melanie
    Mueller-Ebhardt, Helge
    Danzmann, Karsten
    Schnabel, Roman
    NATURE PHOTONICS, 2013, 7 (08) : 626 - 629
  • [38] Magnetisation Reconstruction for Quantum Metrology
    Tehlan, Kartikay
    Bissolo, Michele
    Silvioli, Riccardo
    Oberreuter, Johannes
    Stier, Andreas
    Navab, Nassir
    Wendler, Thomas
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 166 - 171
  • [39] Memory Effects in Quantum Metrology
    Yang, Yuxiang
    PHYSICAL REVIEW LETTERS, 2019, 123 (11)
  • [40] Quantum metrology with molecular ensembles
    Schaffry, Marcus
    Gauger, Erik M.
    Morton, John J. L.
    Fitzsimons, Joseph
    Benjamin, Simon C.
    Lovett, Brendon W.
    PHYSICAL REVIEW A, 2010, 82 (04):