PARALLEL RANDOMIZED TUCKER DECOMPOSITION ALGORITHMS

被引:0
|
作者
Minster, Rachel [1 ]
Li, Zitong [2 ]
Ballard, Grey [1 ]
机构
[1] Wake Wake Forest Univ, Winston Salem, NC 27109 USA
[2] Univ Calif Irvine, Irvine, CA 92697 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2024年 / 46卷 / 02期
基金
美国国家科学基金会;
关键词
Key words. Tucker decompositions; tensors; randomized algorithms; parallel algorithms; low-; rank; multilinear algebra; TENSOR DECOMPOSITIONS; RANK APPROXIMATIONS; COMMUNICATION; COMPUTATION;
D O I
10.1137/22M1540363
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Tucker tensor decomposition is a natural extension of the singular value decomposition (SVD) to multiway data. We propose to accelerate Tucker tensor decomposition algorithms by using randomization and parallelization. We present two algorithms that scale to large data and many processors, significantly reduce both computation and communication cost compared to previous deterministic and randomized approaches, and obtain nearly the same approximation errors. The key idea in our algorithms is to perform randomized sketches with Kronecker-structured random matrices, which reduces computation compared to unstructured matrices and can be implemented using a fundamental tensor computational kernel. We provide probabilistic error analysis of our algorithms and implement a new parallel algorithm for the structured randomized sketch. Our experimental results demonstrate that our combination of randomization and parallelization achieves accurate Tucker decompositions much faster than alternative approaches. We observe up to a 16X speedup over the fastest deterministic parallel implementation on 3D simulation data.
引用
下载
收藏
页码:A1186 / A1213
页数:28
相关论文
共 50 条
  • [41] PARALLEL ALGORITHMS FOR COMPUTING THE TENSOR-TRAIN DECOMPOSITION
    Shi, Tianyi
    Ruth, Maximilian
    Townsend, Alex
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (03): : C101 - C130
  • [42] Tucker Tensor Decomposition on FPGA
    Zhang, Kaiqi
    Zhang, Xiyuan
    Zhang, Zheng
    2019 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2019,
  • [43] ORTHOGONAL NONNEGATIVE TUCKER DECOMPOSITION
    Pan, Junjun
    Ng, Michael K.
    Liu, Ye
    Zhang, Xiongjun
    Yan, Hong
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (01): : B55 - B81
  • [44] Optimization landscape of Tucker decomposition
    Frandsen, Abraham
    Ge, Rong
    MATHEMATICAL PROGRAMMING, 2022, 193 (02) : 687 - 712
  • [45] Optimization landscape of Tucker decomposition
    Abraham Frandsen
    Rong Ge
    Mathematical Programming, 2022, 193 : 687 - 712
  • [46] Single-pass randomized algorithms for LU decomposition
    Li, Hanyu
    Yin, Shuheng
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 595 : 101 - 122
  • [47] Estimating parallel runtimes for randomized algorithms in constraint solving
    Charlotte Truchet
    Alejandro Arbelaez
    Florian Richoux
    Philippe Codognet
    Journal of Heuristics, 2016, 22 : 613 - 648
  • [48] Implementing Randomized Matrix Algorithms in Parallel and Distributed Environments
    Yang, Jiyan
    Meng, Xiangrui
    Mahoney, Michael W.
    PROCEEDINGS OF THE IEEE, 2016, 104 (01) : 58 - 92
  • [49] Estimating parallel runtimes for randomized algorithms in constraint solving
    Truchet, Charlotte
    Arbelaez, Alejandro
    Richoux, Florian
    Codognet, Philippe
    JOURNAL OF HEURISTICS, 2016, 22 (04) : 613 - 648
  • [50] OPTIMAL PARALLEL RANDOMIZED ALGORITHMS FOR SPARSE ADDITION AND IDENTIFICATION
    SPIRAKIS, PG
    INFORMATION AND COMPUTATION, 1988, 76 (01) : 1 - 12