Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm

被引:0
|
作者
Zhou, Yongqiang [1 ,2 ]
Yang, Renhuan [3 ]
Chen, Yibin [3 ]
Huang, Qidong [3 ]
Shen, Chao [3 ]
Yang, Xiuzeng [2 ]
Zhang, Ling [4 ]
Wei, Mengyu [5 ]
机构
[1] Wuyi Univ, Fac Intelligent Mfg, Jiangmen 529020, Peoples R China
[2] Guangxi Normal Univ Nationalities, Dept Phys & Elect Engn, Chongzuo 550001, Peoples R China
[3] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[4] Chinese Acad Sci, R P China, Guiyang 510632, Peoples R China
[5] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
关键词
Fractional-order nonlinear systems; parameter estimation; improved sparrow search algorithm; swarm intelligent optimization algorithm; SYNCHRONIZATION; IDENTIFICATION; CHAOS; DYNAMICS;
D O I
10.1142/S0129183124501316
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position update method of discoverers and warning sparrows based on Sparrow Search Algorithm (SSA), and the parameter estimation simulation experiment for fractional-order financial nonlinear system and fractional-order L nonlinear system is conducted to demonstrate this method. The experimental results show that the proposed ISSA is superior to the SSA, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO) in terms of parameter optimization accuracy and convergence speed, which validates the advantages of the ISSA.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Perturbation Observer Based Fractional-Order Control for SMES Systems Based on Jellyfish Search Algorithm
    Luo, Ke
    Jiao, Yingying
    Zhu, Jiawei
    [J]. FRONTIERS IN ENERGY RESEARCH, 2021, 9
  • [22] Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems
    Huong, Dinh Cong
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2023, 42 (05) : 2740 - 2754
  • [23] Reduced-Order State Estimation for a Class of Nonlinear Fractional-Order Systems
    Dinh Cong Huong
    [J]. Circuits, Systems, and Signal Processing, 2023, 42 : 2740 - 2754
  • [24] Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer
    Marzougui, Soumaya
    Bedoui, Saida
    Atitallah, Asma
    Abderrahim, Kamel
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2022, 41 (10) : 5366 - 5391
  • [25] Parameter and State Estimation of Nonlinear Fractional-Order Model Using Luenberger Observer
    Soumaya Marzougui
    Saïda Bedoui
    Asma Atitallah
    Kamel Abderrahim
    [J]. Circuits, Systems, and Signal Processing, 2022, 41 : 5366 - 5391
  • [26] Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm
    Huang, Yu
    Guo, Feng
    Li, Yongling
    Liu, Yufeng
    [J]. PLOS ONE, 2015, 10 (01):
  • [27] State estimation based on fractional order sliding mode observer method for a class of uncertain fractional-order nonlinear systems
    Zhong, Fuli
    Li, Hui
    Zhong, Shouming
    [J]. SIGNAL PROCESSING, 2016, 127 : 168 - 184
  • [28] Traction Load Modeling and Parameter Identification Based on Improved Sparrow Search Algorithm
    Wu, Zhensheng
    Fan, Deling
    Zou, Fan
    [J]. ENERGIES, 2022, 15 (14)
  • [29] System estimation of the SOFCs using fractional-order social network search algorithm
    Liu, Lijun
    Qian, Jin
    Hua, Li
    Zhang, Bin
    [J]. ENERGY, 2022, 255
  • [30] Fault Estimation and Accommodation of Fractional-Order Nonlinear, Switched, and Interconnected Systems
    Zhang, Chencheng
    Yang, Hao
    Jiang, Bin
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (03) : 1443 - 1453