New understanding of static recrystallization from phase-field simulations

被引:2
|
作者
Li, Runguang [1 ]
Zhang, Yubin [1 ]
Moelans, Nele [2 ]
Yadav, Vishal [3 ]
Jensen, Dorte Juul [1 ]
机构
[1] Tech Univ Denmark, Dept Civil & Mech Engn, Lyngby, Denmark
[2] Dept Mat Engn, KU Leuven, Leuven, Belgium
[3] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL USA
基金
欧盟地平线“2020”;
关键词
Metal; Kinetics; Modeling; Microstructure; Grain boundaries; DIFFRACTION CONTRAST TOMOGRAPHY; GRAIN-GROWTH; DEFORMATION MICROSTRUCTURE; BOUNDARY; NUCLEATION; EVOLUTION; POLYCRYSTALS; PROTRUSIONS; PARAMETERS; PARTICLES;
D O I
10.1557/s43577-024-00716-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase-field (PF) simulations have emerged as a powerful tool for understanding recrystallization phenomena. While numerous factors could simultaneously influence the recrystallization processes of deformed microstructures in experiments, PF simulations allow one to isolate the contribution of each factor and mesoscale mechanism to the overall recrystallization microstructure development and thus determine their relative importance. Furthermore, there are always irregularities in the deformation microstructures, complicating the analysis of experimental results. This article highlights the new understandings of boundary migration during static recrystallization achieved through a close integration of experiments and PF simulations. Finally, we briefly discuss the potential application of PF simulations to probe the dynamics of recrystallization.
引用
收藏
页码:594 / 602
页数:9
相关论文
共 50 条
  • [41] Stochastic phase-field simulations of symmetric alloy solidification
    Benítez, R
    Ramírez-Piscina, L
    FLUCTUATION AND NOISE LETTERS, 2004, 4 (03): : L505 - L510
  • [42] Analytics for microstructure datasets produced by phase-field simulations
    Steinmetz, Philipp
    Yabansu, Yuksel C.
    Hoetzer, Johannes
    Jainta, Marcus
    Nestler, Britta
    Kalidindi, Surya R.
    ACTA MATERIALIA, 2016, 103 : 192 - 203
  • [43] Multicomponent alloy solidification: Phase-field modeling and simulations
    Nestler, B
    Garcke, H
    Stinner, B
    PHYSICAL REVIEW E, 2005, 71 (04):
  • [44] An efficient grain remapping algorithm for phase-field modeling of dynamic recrystallization
    Zhang, Qi
    Fang, Gang
    Computational Materials Science, 2022, 215
  • [45] Modeling melt convection in phase-field simulations of solidification
    Beckermann, C
    Diepers, HJ
    Steinbach, I
    Karma, A
    Tong, X
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) : 468 - 496
  • [46] SymPhas-General Purpose Software for Phase-Field, Phase-Field Crystal, and Reaction-Diffusion Simulations
    Silber, Steven A.
    Karttunen, Mikko
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (01)
  • [47] Phase-field simulations of dynamic wetting of viscoelastic fluids
    Yue, Pengtao
    Feng, James J.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2012, 189 : 8 - 13
  • [48] Phase-field simulations of droplet impact on superhydrophobic surfaces
    Xia, Lei
    Chen, Faze
    Liu, Teng
    Zhang, Du
    Tian, Yanling
    Zhang, Dawei
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 240
  • [49] Code Generation for Massively Parallel Phase-Field Simulations
    Bauer, Martin
    Hoetzer, Johannes
    Ernst, Dominik
    Hammer, Julian
    Seiz, Marco
    Hierl, Henrik
    Hoenig, Jan
    Koestler, Harald
    Wellein, Gerhard
    Nestler, Britta
    Ruede, Ulrich
    PROCEEDINGS OF SC19: THE INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2019,
  • [50] Phase-field fracture simulations of the Brazilian splitting test
    Carola Bilgen
    Stefanie Homberger
    Kerstin Weinberg
    International Journal of Fracture, 2019, 220 : 85 - 98