Polyurethane-based three-dimensional printing for biological mesh carriers

被引:0
|
作者
Wang, Feng [1 ]
Hou, Lin [2 ]
Shan, Yan-Hui [2 ]
Li, Zhen-Su [1 ]
Yang, Xiao-Feng [3 ]
机构
[1] Shanxi Med Univ, Hosp 1, Dept Gen Surg, Taiyuan 030001, Shanxi, Peoples R China
[2] Shanxi Med Univ, Clin Coll 1, Taiyuan 030001, Shanxi, Peoples R China
[3] Shanxi Med Univ, Hosp 1, Dept Urol, Taiyuan 030001, Shanxi, Peoples R China
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
PELVIC ORGAN PROLAPSE; REPAIR;
D O I
10.1038/s41598-024-63000-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Repair and reconstruction of the myopectineal orifice area using meshes is the mainstay of surgical treatment of inguinal hernias. However, the limitations of existing meshes are becoming increasingly evident in clinical applications; thus, the idea of using three-dimensionally (3D)-printed biological meshes was put forward. According to the current level of the 3D printing technology and the inherent characteristics of biological materials, the direct use of the 3D printing technology for making biological materials into finished products suitable for clinical applications is not yet supported, but synthetic materials can be first printed into 3D form carriers, compounded with biological materials, and finally made into finished products. The purpose of this study was to develop a technical protocol for making 3D-printed biomesh carriers using polyurethane as a raw material. In our study: raw material, polyurethane; weight, 20-30 g/m2; weaving method, hexagonal mesh; elastic tension aspect ratio, 2:1; diameters of pores, 0.1-1 mm; surface area, 8 x 12 cm2; the optimal printing layer height, temperature and velocity were 0.1 mm, 210-220 degrees C and 60 mm/s. Its clinical significance lies in: (1) applied to preoperative planning and design a detailed surgical plan; (2) applied to special types of surgery including patients in puberty, recurrent and compound inguinal hernias; (3) significantly improve the efficiency of doctor-patient communication; (4) it can shorten the operation and recovery period by about 1/3 and can save about 1/4 of the cost for patients; (5) the learning curve is significantly shortened, which is conducive to the cultivation of reserve talents.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Three-dimensional printing technology based on metal spray and deposition
    Shan Z.
    Yang L.
    Liu F.
    Rong W.
    Liu Q.
    Shan, Zhongde (shanzd@cam.com.cn), 1600, Central South University of Technology (47): : 3642 - 3647
  • [32] Three-dimensional bio-printing
    GU Qi
    HAO Jie
    LU YangJie
    WANG Liu
    WALLACE Gordon G.
    ZHOU Qi
    Science China Life Sciences, 2015, 58 (05) : 411 - 419
  • [33] Three-dimensional printing of a bioactive glass
    Meszaros, Robert
    Zhao, Rong
    Travitzky, Nahum
    Fey, Tobias
    Greil, Peter
    Wondraczek, Lothar
    GLASS TECHNOLOGY-EUROPEAN JOURNAL OF GLASS SCIENCE AND TECHNOLOGY PART A, 2011, 52 (04): : 111 - 116
  • [34] Three-dimensional bio-printing
    Gu Qi
    Hao Jie
    Lu YangJie
    Wang Liu
    Wallace, Gordon G.
    Zhou Qi
    SCIENCE CHINA-LIFE SCIENCES, 2015, 58 (05) : 411 - 419
  • [35] Three-Dimensional Printing in Hand Surgery
    Zhang, Dafang
    Bauer, Andrea S.
    Blazar, Philip
    Earp, Brandon E.
    JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2021, 46 (11): : 1016 - 1022
  • [36] Three-dimensional printing models in surgery
    Wiesel, Ory
    Jaklitsch, Michael T.
    Fisichella, P. Marco
    SURGERY, 2016, 160 (03) : 815 - 817
  • [37] Three-dimensional Printing in Pediatric Otolaryngology
    You, Peng
    Bartellas, Michael
    OTOLARYNGOLOGIC CLINICS OF NORTH AMERICA, 2022, 55 (06) : 1243 - 1251
  • [38] Three-dimensional printing for biomedical applications
    Conti, Michele
    Marconi, Stefania
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2019, 42 (10): : 537 - 538
  • [39] Anticounterfeiting Options for Three-Dimensional Printing
    Flank, Sharon
    Ritchie, Gary E.
    Maksimovic, Rebecca
    3D PRINTING AND ADDITIVE MANUFACTURING, 2015, 2 (04) : 181 - 189
  • [40] Three-dimensional printing of scintillating materials
    Mishnayot, Y.
    Layani, M.
    Cooperstein, I.
    Magdassi, S.
    Ron, G.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (08):